{"title":"Bergman型算子的$L^p$-$L^q$有界性和紧性","authors":"Lijia Ding, Kai Wang","doi":"10.11650/tjm/220101","DOIUrl":null,"url":null,"abstract":". We investigate Bergman type operators on the complex unit ball, which are singular integral operators induced by the modified Bergman kernel. We consider the L p - L q boundedness and compactness of Bergman type operators. The results of boundedness can be viewed as the Hardy–Littlewood–Sobolev (HLS) type theorem in the case unit ball. We also give some sharp norm estimates of Bergman type operators which in fact gives the upper bounds of the optimal constants in the HLS type inequality on the unit ball. Moreover, a trace formula is given.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The $L^p$-$L^q$ Boundedness and Compactness of Bergman Type Operators\",\"authors\":\"Lijia Ding, Kai Wang\",\"doi\":\"10.11650/tjm/220101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We investigate Bergman type operators on the complex unit ball, which are singular integral operators induced by the modified Bergman kernel. We consider the L p - L q boundedness and compactness of Bergman type operators. The results of boundedness can be viewed as the Hardy–Littlewood–Sobolev (HLS) type theorem in the case unit ball. We also give some sharp norm estimates of Bergman type operators which in fact gives the upper bounds of the optimal constants in the HLS type inequality on the unit ball. Moreover, a trace formula is given.\",\"PeriodicalId\":22176,\"journal\":{\"name\":\"Taiwanese Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Taiwanese Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220101\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The $L^p$-$L^q$ Boundedness and Compactness of Bergman Type Operators
. We investigate Bergman type operators on the complex unit ball, which are singular integral operators induced by the modified Bergman kernel. We consider the L p - L q boundedness and compactness of Bergman type operators. The results of boundedness can be viewed as the Hardy–Littlewood–Sobolev (HLS) type theorem in the case unit ball. We also give some sharp norm estimates of Bergman type operators which in fact gives the upper bounds of the optimal constants in the HLS type inequality on the unit ball. Moreover, a trace formula is given.
期刊介绍:
The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.