Bergman型算子的$L^p$-$L^q$有界性和紧性

Pub Date : 2022-01-01 DOI:10.11650/tjm/220101
Lijia Ding, Kai Wang
{"title":"Bergman型算子的$L^p$-$L^q$有界性和紧性","authors":"Lijia Ding, Kai Wang","doi":"10.11650/tjm/220101","DOIUrl":null,"url":null,"abstract":". We investigate Bergman type operators on the complex unit ball, which are singular integral operators induced by the modified Bergman kernel. We consider the L p - L q boundedness and compactness of Bergman type operators. The results of boundedness can be viewed as the Hardy–Littlewood–Sobolev (HLS) type theorem in the case unit ball. We also give some sharp norm estimates of Bergman type operators which in fact gives the upper bounds of the optimal constants in the HLS type inequality on the unit ball. Moreover, a trace formula is given.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The $L^p$-$L^q$ Boundedness and Compactness of Bergman Type Operators\",\"authors\":\"Lijia Ding, Kai Wang\",\"doi\":\"10.11650/tjm/220101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We investigate Bergman type operators on the complex unit ball, which are singular integral operators induced by the modified Bergman kernel. We consider the L p - L q boundedness and compactness of Bergman type operators. The results of boundedness can be viewed as the Hardy–Littlewood–Sobolev (HLS) type theorem in the case unit ball. We also give some sharp norm estimates of Bergman type operators which in fact gives the upper bounds of the optimal constants in the HLS type inequality on the unit ball. Moreover, a trace formula is given.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

.我们研究了复单位球上的Bergman型算子,它们是由改进的Bergman-kernel诱导的奇异积分算子。我们考虑Bergman型算子的Lp-Lq有界性和紧致性。有界性的结果可视为单位球情形下的Hardy–Littlewood–Sobolev(HLS)型定理。我们还给出了Bergman型算子的一些尖锐范数估计,它实际上给出了单位球上HLS型不等式中最优常数的上界。此外,还给出了一个迹公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The $L^p$-$L^q$ Boundedness and Compactness of Bergman Type Operators
. We investigate Bergman type operators on the complex unit ball, which are singular integral operators induced by the modified Bergman kernel. We consider the L p - L q boundedness and compactness of Bergman type operators. The results of boundedness can be viewed as the Hardy–Littlewood–Sobolev (HLS) type theorem in the case unit ball. We also give some sharp norm estimates of Bergman type operators which in fact gives the upper bounds of the optimal constants in the HLS type inequality on the unit ball. Moreover, a trace formula is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信