一种新的基于ABC算法的多相滤波器组设计方法

IF 0.9 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Ahmet Logoglu, S. Kockanat, N. Karaboga
{"title":"一种新的基于ABC算法的多相滤波器组设计方法","authors":"Ahmet Logoglu, S. Kockanat, N. Karaboga","doi":"10.5755/j02.eie.31234","DOIUrl":null,"url":null,"abstract":"Polyphase filter banks (PFBs) are the most preferred multirate structures for subband coding in Digital Signal Processing (DSP) and communication. For PFB design, there are many important design parameters such as filter length and frequency selectivity. Also, to realize the desired frequency response in designs, stopband and passband attenuation are of considerable importance. In PFB design, researchers and practitioners frequently use iterative and meta-heuristic optimization methods. Heuristic techniques have a significant problem-solving ability in continuous and discrete solution space. Therefore, they give better results than other suggested methods, and their performance depends on the control parameters. In this study, Artificial Bee Colony (ABC) algorithm was employed for suggested design problem of PFB. In the first stage, the control parameters of the ABC algorithm were examined to improve the performance of the proposed PFB problem. In the second stage, the analysis was carried out by changing filter lengths (8-256) and filter band frequencies (0.3-0.7/0.4-0.6). All results obtained were also compared with the Particle Swarm Optimization algorithm (PSO) and the Genetic algorithm (GA). Finally, a DSP application of PFB was carried out according to best results achieved by the ABC algorithm for filter lengths and frequencies.","PeriodicalId":51031,"journal":{"name":"Elektronika Ir Elektrotechnika","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach for Polyphase Filter Bank Design Using ABC Algorithm\",\"authors\":\"Ahmet Logoglu, S. Kockanat, N. Karaboga\",\"doi\":\"10.5755/j02.eie.31234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polyphase filter banks (PFBs) are the most preferred multirate structures for subband coding in Digital Signal Processing (DSP) and communication. For PFB design, there are many important design parameters such as filter length and frequency selectivity. Also, to realize the desired frequency response in designs, stopband and passband attenuation are of considerable importance. In PFB design, researchers and practitioners frequently use iterative and meta-heuristic optimization methods. Heuristic techniques have a significant problem-solving ability in continuous and discrete solution space. Therefore, they give better results than other suggested methods, and their performance depends on the control parameters. In this study, Artificial Bee Colony (ABC) algorithm was employed for suggested design problem of PFB. In the first stage, the control parameters of the ABC algorithm were examined to improve the performance of the proposed PFB problem. In the second stage, the analysis was carried out by changing filter lengths (8-256) and filter band frequencies (0.3-0.7/0.4-0.6). All results obtained were also compared with the Particle Swarm Optimization algorithm (PSO) and the Genetic algorithm (GA). Finally, a DSP application of PFB was carried out according to best results achieved by the ABC algorithm for filter lengths and frequencies.\",\"PeriodicalId\":51031,\"journal\":{\"name\":\"Elektronika Ir Elektrotechnika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika Ir Elektrotechnika\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.31234\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika Ir Elektrotechnika","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5755/j02.eie.31234","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

多相滤波器组(PFBs)是数字信号处理(DSP)和通信中子带编码的首选多速率结构。对于PFB设计,有许多重要的设计参数,如滤波器长度和频率选择性。此外,为了在设计中实现期望的频率响应,阻带和通带衰减是相当重要的。在PFB设计中,研究者和实践者经常使用迭代和元启发式优化方法。启发式技术在连续和离散解空间中都具有显著的问题解决能力。因此,它们比其他建议的方法给出更好的结果,并且它们的性能取决于控制参数。本研究采用人工蜂群(Artificial Bee Colony, ABC)算法求解PFB的设计问题。在第一阶段,检验ABC算法的控制参数,以提高所提出的PFB问题的性能。在第二阶段,通过改变滤波器长度(8-256)和滤波器频带频率(0.3-0.7/0.4-0.6)进行分析。并将所得结果与粒子群优化算法(PSO)和遗传算法(GA)进行比较。最后,根据ABC算法在滤波器长度和频率上的最佳结果,对PFB进行了DSP应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Approach for Polyphase Filter Bank Design Using ABC Algorithm
Polyphase filter banks (PFBs) are the most preferred multirate structures for subband coding in Digital Signal Processing (DSP) and communication. For PFB design, there are many important design parameters such as filter length and frequency selectivity. Also, to realize the desired frequency response in designs, stopband and passband attenuation are of considerable importance. In PFB design, researchers and practitioners frequently use iterative and meta-heuristic optimization methods. Heuristic techniques have a significant problem-solving ability in continuous and discrete solution space. Therefore, they give better results than other suggested methods, and their performance depends on the control parameters. In this study, Artificial Bee Colony (ABC) algorithm was employed for suggested design problem of PFB. In the first stage, the control parameters of the ABC algorithm were examined to improve the performance of the proposed PFB problem. In the second stage, the analysis was carried out by changing filter lengths (8-256) and filter band frequencies (0.3-0.7/0.4-0.6). All results obtained were also compared with the Particle Swarm Optimization algorithm (PSO) and the Genetic algorithm (GA). Finally, a DSP application of PFB was carried out according to best results achieved by the ABC algorithm for filter lengths and frequencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Elektronika Ir Elektrotechnika
Elektronika Ir Elektrotechnika 工程技术-工程:电子与电气
CiteScore
2.40
自引率
7.70%
发文量
44
审稿时长
24 months
期刊介绍: The journal aims to attract original research papers on featuring practical developments in the field of electronics and electrical engineering. The journal seeks to publish research progress in the field of electronics and electrical engineering with an emphasis on the applied rather than the theoretical in as much detail as possible. The journal publishes regular papers dealing with the following areas, but not limited to: Electronics; Electronic Measurements; Signal Technology; Microelectronics; High Frequency Technology, Microwaves. Electrical Engineering; Renewable Energy; Automation, Robotics; Telecommunications Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信