{"title":"Bernstein-Kantorovich-Choquet多项式关于变形Lebesgue测度的$L^p$-逼近的定量估计","authors":"S. Gal, S. Trifa","doi":"10.33205/CMA.481186","DOIUrl":null,"url":null,"abstract":"For the univariate Bernstein-Kantorovich-Choquet polynomials written in terms of the Choquet integral with respect to a distorted probability Lebesgue measure, we obtain quantitative approximation estimates for the $L^{p}$-norm, $1\\le p<+\\infty$, in terms of a $K$-functional.","PeriodicalId":36038,"journal":{"name":"Constructive Mathematical Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Quantitative Estimates for $L^p$-Approximation by Bernstein-Kantorovich-Choquet Polynomials with Respect to Distorted Lebesgue Measures\",\"authors\":\"S. Gal, S. Trifa\",\"doi\":\"10.33205/CMA.481186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the univariate Bernstein-Kantorovich-Choquet polynomials written in terms of the Choquet integral with respect to a distorted probability Lebesgue measure, we obtain quantitative approximation estimates for the $L^{p}$-norm, $1\\\\le p<+\\\\infty$, in terms of a $K$-functional.\",\"PeriodicalId\":36038,\"journal\":{\"name\":\"Constructive Mathematical Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Constructive Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33205/CMA.481186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constructive Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33205/CMA.481186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Quantitative Estimates for $L^p$-Approximation by Bernstein-Kantorovich-Choquet Polynomials with Respect to Distorted Lebesgue Measures
For the univariate Bernstein-Kantorovich-Choquet polynomials written in terms of the Choquet integral with respect to a distorted probability Lebesgue measure, we obtain quantitative approximation estimates for the $L^{p}$-norm, $1\le p<+\infty$, in terms of a $K$-functional.