Ioannis V. Loumiotis, Pavlos Kosmides, Evgenia F. Adamopoulou, K. Demestichas, M. Theologou
{"title":"聚合无线光网络中回程资源的动态分配","authors":"Ioannis V. Loumiotis, Pavlos Kosmides, Evgenia F. Adamopoulou, K. Demestichas, M. Theologou","doi":"10.1109/JSAC.2017.2659023","DOIUrl":null,"url":null,"abstract":"The market uptake of the 4th Generation networks is expected to support the increasing demand for wireless broadband services and ensure an enhanced mobile user experience. In this direction, the convergence of a wireless access network with an optical backhauling has been proposed. However, in such a converged architecture, the traditional fixed commitment of the backhaul resources does not prove to be as efficient, and novel dynamic schemes are required that consider both the needs of the base stations and the limitations of the passive optical network. This paper is concerned with the topic of resource allocation in two competing base stations that belong to different operators and share a common optical backhaul network infrastructure. An approach based on evolutionary game theory is proposed and employed, with a view to examining the interactions among the base stations and the passive optical network. Using the model of replicator dynamics, the proposed system design is proved to be asymptotically stable. In addition, this paper studies and reveals the extent to which time delay can have an impact on the proposed system design.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"35 1","pages":"280-287"},"PeriodicalIF":13.8000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2017.2659023","citationCount":"9","resultStr":"{\"title\":\"Dynamic Allocation of Backhaul Resources in Converged Wireless-Optical Networks\",\"authors\":\"Ioannis V. Loumiotis, Pavlos Kosmides, Evgenia F. Adamopoulou, K. Demestichas, M. Theologou\",\"doi\":\"10.1109/JSAC.2017.2659023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The market uptake of the 4th Generation networks is expected to support the increasing demand for wireless broadband services and ensure an enhanced mobile user experience. In this direction, the convergence of a wireless access network with an optical backhauling has been proposed. However, in such a converged architecture, the traditional fixed commitment of the backhaul resources does not prove to be as efficient, and novel dynamic schemes are required that consider both the needs of the base stations and the limitations of the passive optical network. This paper is concerned with the topic of resource allocation in two competing base stations that belong to different operators and share a common optical backhaul network infrastructure. An approach based on evolutionary game theory is proposed and employed, with a view to examining the interactions among the base stations and the passive optical network. Using the model of replicator dynamics, the proposed system design is proved to be asymptotically stable. In addition, this paper studies and reveals the extent to which time delay can have an impact on the proposed system design.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"35 1\",\"pages\":\"280-287\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JSAC.2017.2659023\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2017.2659023\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2017.2659023","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Dynamic Allocation of Backhaul Resources in Converged Wireless-Optical Networks
The market uptake of the 4th Generation networks is expected to support the increasing demand for wireless broadband services and ensure an enhanced mobile user experience. In this direction, the convergence of a wireless access network with an optical backhauling has been proposed. However, in such a converged architecture, the traditional fixed commitment of the backhaul resources does not prove to be as efficient, and novel dynamic schemes are required that consider both the needs of the base stations and the limitations of the passive optical network. This paper is concerned with the topic of resource allocation in two competing base stations that belong to different operators and share a common optical backhaul network infrastructure. An approach based on evolutionary game theory is proposed and employed, with a view to examining the interactions among the base stations and the passive optical network. Using the model of replicator dynamics, the proposed system design is proved to be asymptotically stable. In addition, this paper studies and reveals the extent to which time delay can have an impact on the proposed system design.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.