时间分数型Hirota-Satsuma Korteweg-de Vries系统的Lie对称性和精确解

IF 1.7 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
H.M. Srivastava, H. Mandal, B. Bira
{"title":"时间分数型Hirota-Satsuma Korteweg-de Vries系统的Lie对称性和精确解","authors":"H.M. Srivastava,&nbsp;H. Mandal,&nbsp;B. Bira","doi":"10.1134/S106192082103002X","DOIUrl":null,"url":null,"abstract":"<p> In the present work, we consider the nonlinear time-fractional Hirota-Satsuma KdV (Korteweg-de Vries) system in the sense of the Riemann-Liouville fractional calculus and the Erdélyi-Kober fractional calculus. By appealing to Lie group analysis, we derive the symmetry groups of transformations under which the given equations remain invariant. We also construct the symmetry reductions and particular group invariant solutions for the given system of equations. Finally, in order to highlight the importance of the study, the physical significance of the solution, which is described in this paper, is investigated and illustrated graphically. </p>","PeriodicalId":763,"journal":{"name":"Russian Journal of Mathematical Physics","volume":"28 3","pages":"284 - 292"},"PeriodicalIF":1.7000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lie Symmetry and Exact Solution of the Time-Fractional Hirota–Satsuma Korteweg–de Vries System\",\"authors\":\"H.M. Srivastava,&nbsp;H. Mandal,&nbsp;B. Bira\",\"doi\":\"10.1134/S106192082103002X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> In the present work, we consider the nonlinear time-fractional Hirota-Satsuma KdV (Korteweg-de Vries) system in the sense of the Riemann-Liouville fractional calculus and the Erdélyi-Kober fractional calculus. By appealing to Lie group analysis, we derive the symmetry groups of transformations under which the given equations remain invariant. We also construct the symmetry reductions and particular group invariant solutions for the given system of equations. Finally, in order to highlight the importance of the study, the physical significance of the solution, which is described in this paper, is investigated and illustrated graphically. </p>\",\"PeriodicalId\":763,\"journal\":{\"name\":\"Russian Journal of Mathematical Physics\",\"volume\":\"28 3\",\"pages\":\"284 - 292\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S106192082103002X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S106192082103002X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

摘要

在本工作中,我们从Riemann-Liouville分数微积分和erd - kober分数微积分的意义上考虑非线性时间分数型Hirota-Satsuma KdV (Korteweg-de Vries)系统。利用李群分析,我们得到了给定方程保持不变的变换的对称群。我们还构造了给定方程组的对称约简和特群不变量解。最后,为了突出研究的重要性,对本文所描述的解的物理意义进行了调查和图解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lie Symmetry and Exact Solution of the Time-Fractional Hirota–Satsuma Korteweg–de Vries System

In the present work, we consider the nonlinear time-fractional Hirota-Satsuma KdV (Korteweg-de Vries) system in the sense of the Riemann-Liouville fractional calculus and the Erdélyi-Kober fractional calculus. By appealing to Lie group analysis, we derive the symmetry groups of transformations under which the given equations remain invariant. We also construct the symmetry reductions and particular group invariant solutions for the given system of equations. Finally, in order to highlight the importance of the study, the physical significance of the solution, which is described in this paper, is investigated and illustrated graphically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Journal of Mathematical Physics
Russian Journal of Mathematical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
14.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: Russian Journal of Mathematical Physics is a peer-reviewed periodical that deals with the full range of topics subsumed by that discipline, which lies at the foundation of much of contemporary science. Thus, in addition to mathematical physics per se, the journal coverage includes, but is not limited to, functional analysis, linear and nonlinear partial differential equations, algebras, quantization, quantum field theory, modern differential and algebraic geometry and topology, representations of Lie groups, calculus of variations, asymptotic methods, random process theory, dynamical systems, and control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信