E. Salas, S. Subburayalu, B. Slater, K. Zhao, B. Bhattacharya, R. Tripathy, Ayan Das, R. Nigam, R. Dave, Parshva Parekh
{"title":"利用AVIRIS-NG图像和有限的实地数据绘制零散耕地景观中的作物类型","authors":"E. Salas, S. Subburayalu, B. Slater, K. Zhao, B. Bhattacharya, R. Tripathy, Ayan Das, R. Nigam, R. Dave, Parshva Parekh","doi":"10.1080/19479832.2019.1706646","DOIUrl":null,"url":null,"abstract":"ABSTRACT The fragmented nature of arable landscapes and diverse cropping patterns often thwart the precise mapping of crop types. Recent advances in remote-sensing technologies and data mining approaches offer a viable solution to this mapping problem. We demonstrated the potential of using hyperspectral imaging and an ensemble classification approach that combines five machine-learning classifiers to map crop types in the Anand District of Gujarat, India. We derived a set of narrow/broad-band indices from the Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) imagery to represent spectral variations and identify target classes and their distribution patterns. The results showed that Maximum Entropy (MaxEnt) and Generalised Linear Model (GLM) had strong discriminatory image classification abilities with Area Under the Curve (AUC) values ranging between 0.75 and 0.93 for MaxEnt and between 0.73 and 0.92 for GLM. The ensemble model resulted in improved accuracy scores compared to individual models. We found the Photochemical Reflectance Index (PRI) and Moment Distance Ratio Right/Left (MDRRL) to be important predictors for target classes such as wheat, legumes, and eggplant. Results from the study revealed the potential of using one-class ensemble modelling approach and hyperspectral images with limited field dataset to map agricultural systems that are fragmented in nature.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":"11 1","pages":"33 - 56"},"PeriodicalIF":1.8000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19479832.2019.1706646","citationCount":"17","resultStr":"{\"title\":\"Mapping crop types in fragmented arable landscapes using AVIRIS-NG imagery and limited field data\",\"authors\":\"E. Salas, S. Subburayalu, B. Slater, K. Zhao, B. Bhattacharya, R. Tripathy, Ayan Das, R. Nigam, R. Dave, Parshva Parekh\",\"doi\":\"10.1080/19479832.2019.1706646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The fragmented nature of arable landscapes and diverse cropping patterns often thwart the precise mapping of crop types. Recent advances in remote-sensing technologies and data mining approaches offer a viable solution to this mapping problem. We demonstrated the potential of using hyperspectral imaging and an ensemble classification approach that combines five machine-learning classifiers to map crop types in the Anand District of Gujarat, India. We derived a set of narrow/broad-band indices from the Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) imagery to represent spectral variations and identify target classes and their distribution patterns. The results showed that Maximum Entropy (MaxEnt) and Generalised Linear Model (GLM) had strong discriminatory image classification abilities with Area Under the Curve (AUC) values ranging between 0.75 and 0.93 for MaxEnt and between 0.73 and 0.92 for GLM. The ensemble model resulted in improved accuracy scores compared to individual models. We found the Photochemical Reflectance Index (PRI) and Moment Distance Ratio Right/Left (MDRRL) to be important predictors for target classes such as wheat, legumes, and eggplant. Results from the study revealed the potential of using one-class ensemble modelling approach and hyperspectral images with limited field dataset to map agricultural systems that are fragmented in nature.\",\"PeriodicalId\":46012,\"journal\":{\"name\":\"International Journal of Image and Data Fusion\",\"volume\":\"11 1\",\"pages\":\"33 - 56\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19479832.2019.1706646\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Data Fusion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19479832.2019.1706646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2019.1706646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Mapping crop types in fragmented arable landscapes using AVIRIS-NG imagery and limited field data
ABSTRACT The fragmented nature of arable landscapes and diverse cropping patterns often thwart the precise mapping of crop types. Recent advances in remote-sensing technologies and data mining approaches offer a viable solution to this mapping problem. We demonstrated the potential of using hyperspectral imaging and an ensemble classification approach that combines five machine-learning classifiers to map crop types in the Anand District of Gujarat, India. We derived a set of narrow/broad-band indices from the Airborne Visible Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) imagery to represent spectral variations and identify target classes and their distribution patterns. The results showed that Maximum Entropy (MaxEnt) and Generalised Linear Model (GLM) had strong discriminatory image classification abilities with Area Under the Curve (AUC) values ranging between 0.75 and 0.93 for MaxEnt and between 0.73 and 0.92 for GLM. The ensemble model resulted in improved accuracy scores compared to individual models. We found the Photochemical Reflectance Index (PRI) and Moment Distance Ratio Right/Left (MDRRL) to be important predictors for target classes such as wheat, legumes, and eggplant. Results from the study revealed the potential of using one-class ensemble modelling approach and hyperspectral images with limited field dataset to map agricultural systems that are fragmented in nature.
期刊介绍:
International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).