Mitra Sadat Lavasani, Nahid Raeisi Ardali, R. Sotudeh-Gharebagh, R. Zarghami, J. Abonyi, N. Mostoufi
{"title":"大数据分析在工艺工程中的应用机会","authors":"Mitra Sadat Lavasani, Nahid Raeisi Ardali, R. Sotudeh-Gharebagh, R. Zarghami, J. Abonyi, N. Mostoufi","doi":"10.1515/revce-2020-0054","DOIUrl":null,"url":null,"abstract":"Abstract Big data is an expression for massive data sets consisting of both structured and unstructured data that are particularly difficult to store, analyze and visualize. Big data analytics has the potential to help companies or organizations improve operations as well as disclose hidden patterns and secret correlations to make faster and intelligent decisions. This article provides useful information on this emerging and promising field for companies, industries, and researchers to gain a richer and deeper insight into advancements. Initially, an overview of big data content, key characteristics, and related topics are presented. The paper also highlights a systematic review of available big data techniques and analytics. The available big data analytics tools and platforms are categorized. Besides, this article discusses recent applications of big data in chemical industries to increase understanding and encourage its implementation in their engineering processes as much as possible. Finally, by emphasizing the adoption of big data analytics in various areas of process engineering, the aim is to provide a practical vision of big data.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Big data analytics opportunities for applications in process engineering\",\"authors\":\"Mitra Sadat Lavasani, Nahid Raeisi Ardali, R. Sotudeh-Gharebagh, R. Zarghami, J. Abonyi, N. Mostoufi\",\"doi\":\"10.1515/revce-2020-0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Big data is an expression for massive data sets consisting of both structured and unstructured data that are particularly difficult to store, analyze and visualize. Big data analytics has the potential to help companies or organizations improve operations as well as disclose hidden patterns and secret correlations to make faster and intelligent decisions. This article provides useful information on this emerging and promising field for companies, industries, and researchers to gain a richer and deeper insight into advancements. Initially, an overview of big data content, key characteristics, and related topics are presented. The paper also highlights a systematic review of available big data techniques and analytics. The available big data analytics tools and platforms are categorized. Besides, this article discusses recent applications of big data in chemical industries to increase understanding and encourage its implementation in their engineering processes as much as possible. Finally, by emphasizing the adoption of big data analytics in various areas of process engineering, the aim is to provide a practical vision of big data.\",\"PeriodicalId\":54485,\"journal\":{\"name\":\"Reviews in Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/revce-2020-0054\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2020-0054","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Big data analytics opportunities for applications in process engineering
Abstract Big data is an expression for massive data sets consisting of both structured and unstructured data that are particularly difficult to store, analyze and visualize. Big data analytics has the potential to help companies or organizations improve operations as well as disclose hidden patterns and secret correlations to make faster and intelligent decisions. This article provides useful information on this emerging and promising field for companies, industries, and researchers to gain a richer and deeper insight into advancements. Initially, an overview of big data content, key characteristics, and related topics are presented. The paper also highlights a systematic review of available big data techniques and analytics. The available big data analytics tools and platforms are categorized. Besides, this article discusses recent applications of big data in chemical industries to increase understanding and encourage its implementation in their engineering processes as much as possible. Finally, by emphasizing the adoption of big data analytics in various areas of process engineering, the aim is to provide a practical vision of big data.
期刊介绍:
Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.