关于多图的abelian $$\ell $$ -塔II

IF 0.5 Q3 MATHEMATICS
Kevin McGown, Daniel Vallières
{"title":"关于多图的abelian $$\\ell $$ -塔II","authors":"Kevin McGown,&nbsp;Daniel Vallières","doi":"10.1007/s40316-021-00183-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\ell \\)</span> be a rational prime. Previously, abelian <span>\\(\\ell \\)</span>-towers of multigraphs were introduced which are analogous to <span>\\({\\mathbb {Z}}_{\\ell }\\)</span>-extensions of number fields. It was shown that for a certain class of towers of bouquets, the growth of the <span>\\(\\ell \\)</span>-part of the number of spanning trees behaves in a predictable manner (analogous to a well-known theorem of Iwasawa for <span>\\({\\mathbb {Z}}_{\\ell }\\)</span>-extensions of number fields). In this paper, we give a generalization to a broader class of regular abelian <span>\\(\\ell \\)</span>-towers of bouquets than was originally considered. To carry this out, we observe that certain shifted Chebyshev polynomials are members of a continuously parametrized family of power series with coefficients in <span>\\({\\mathbb {Z}}_{\\ell }\\)</span> and then study the special value at <span>\\(u=1\\)</span> of the Artin-Ihara <i>L</i>-function <span>\\(\\ell \\)</span>-adically.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"47 2","pages":"461 - 473"},"PeriodicalIF":0.5000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On abelian \\\\(\\\\ell \\\\)-towers of multigraphs II\",\"authors\":\"Kevin McGown,&nbsp;Daniel Vallières\",\"doi\":\"10.1007/s40316-021-00183-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\ell \\\\)</span> be a rational prime. Previously, abelian <span>\\\\(\\\\ell \\\\)</span>-towers of multigraphs were introduced which are analogous to <span>\\\\({\\\\mathbb {Z}}_{\\\\ell }\\\\)</span>-extensions of number fields. It was shown that for a certain class of towers of bouquets, the growth of the <span>\\\\(\\\\ell \\\\)</span>-part of the number of spanning trees behaves in a predictable manner (analogous to a well-known theorem of Iwasawa for <span>\\\\({\\\\mathbb {Z}}_{\\\\ell }\\\\)</span>-extensions of number fields). In this paper, we give a generalization to a broader class of regular abelian <span>\\\\(\\\\ell \\\\)</span>-towers of bouquets than was originally considered. To carry this out, we observe that certain shifted Chebyshev polynomials are members of a continuously parametrized family of power series with coefficients in <span>\\\\({\\\\mathbb {Z}}_{\\\\ell }\\\\)</span> and then study the special value at <span>\\\\(u=1\\\\)</span> of the Artin-Ihara <i>L</i>-function <span>\\\\(\\\\ell \\\\)</span>-adically.</p></div>\",\"PeriodicalId\":42753,\"journal\":{\"name\":\"Annales Mathematiques du Quebec\",\"volume\":\"47 2\",\"pages\":\"461 - 473\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematiques du Quebec\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40316-021-00183-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-021-00183-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

设\(\ell\)为有理素数。以前,引入了多重图的阿贝尔塔,它类似于数域的({\mathbb{Z}}_{\ell})-扩展。结果表明,对于某类花束塔,生成树数的\(\ell\)部分的增长以可预测的方式表现(类似于岩泽明关于数域的\({\mathbb{Z}}_{\ell\})-扩展的一个著名定理)。在本文中,我们对一类比最初考虑的更广泛的正则阿贝尔-塔进行了推广。为了实现这一点,我们观察到某些移位的切比雪夫多项式是系数在\({\mathbb{Z}}_{\ell})中的连续参数化幂级数族的成员,然后从根本上研究了Artin-Ihara L-函数\(\ell)的特殊值at \(u=1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On abelian \(\ell \)-towers of multigraphs II

Let \(\ell \) be a rational prime. Previously, abelian \(\ell \)-towers of multigraphs were introduced which are analogous to \({\mathbb {Z}}_{\ell }\)-extensions of number fields. It was shown that for a certain class of towers of bouquets, the growth of the \(\ell \)-part of the number of spanning trees behaves in a predictable manner (analogous to a well-known theorem of Iwasawa for \({\mathbb {Z}}_{\ell }\)-extensions of number fields). In this paper, we give a generalization to a broader class of regular abelian \(\ell \)-towers of bouquets than was originally considered. To carry this out, we observe that certain shifted Chebyshev polynomials are members of a continuously parametrized family of power series with coefficients in \({\mathbb {Z}}_{\ell }\) and then study the special value at \(u=1\) of the Artin-Ihara L-function \(\ell \)-adically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信