{"title":"关于小于24阶有限亚生意人群的若干图","authors":"I. Gambo, N. Sarmin, S. Omer","doi":"10.11113/MATEMATIKA.V35.N2.1054","DOIUrl":null,"url":null,"abstract":"In this work, a non-abelian metabelian group is represented by G while represents conjugacy class graph. Conjugacy class graph of a group is that graph associated with the conjugacy classes of the group. Its vertices are the non-central conjugacy classes of the group, and two distinct vertices are joined by an edge if their cardinalities are not coprime. A group is referred to as metabelian if there exits an abelian normal subgroup in which the factor group is also abelian. It has been proven earlier that 25 non-abelian metabelian groups which have order less than 24, which are considered in this work, exist. In this article, the conjugacy class graphs of non-abelian metabelian groups of order less than 24 are determined as well as examples of some finite groups associated to other graphs are given.","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some Graphs of Finite Metabelian Groups of Order Less Than 24\",\"authors\":\"I. Gambo, N. Sarmin, S. Omer\",\"doi\":\"10.11113/MATEMATIKA.V35.N2.1054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a non-abelian metabelian group is represented by G while represents conjugacy class graph. Conjugacy class graph of a group is that graph associated with the conjugacy classes of the group. Its vertices are the non-central conjugacy classes of the group, and two distinct vertices are joined by an edge if their cardinalities are not coprime. A group is referred to as metabelian if there exits an abelian normal subgroup in which the factor group is also abelian. It has been proven earlier that 25 non-abelian metabelian groups which have order less than 24, which are considered in this work, exist. In this article, the conjugacy class graphs of non-abelian metabelian groups of order less than 24 are determined as well as examples of some finite groups associated to other graphs are given.\",\"PeriodicalId\":43733,\"journal\":{\"name\":\"Matematika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/MATEMATIKA.V35.N2.1054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/MATEMATIKA.V35.N2.1054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On Some Graphs of Finite Metabelian Groups of Order Less Than 24
In this work, a non-abelian metabelian group is represented by G while represents conjugacy class graph. Conjugacy class graph of a group is that graph associated with the conjugacy classes of the group. Its vertices are the non-central conjugacy classes of the group, and two distinct vertices are joined by an edge if their cardinalities are not coprime. A group is referred to as metabelian if there exits an abelian normal subgroup in which the factor group is also abelian. It has been proven earlier that 25 non-abelian metabelian groups which have order less than 24, which are considered in this work, exist. In this article, the conjugacy class graphs of non-abelian metabelian groups of order less than 24 are determined as well as examples of some finite groups associated to other graphs are given.