空间曲线的自然共轭和共轭的位置向量

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
A. Alghanemi, M. Khan
{"title":"空间曲线的自然共轭和共轭的位置向量","authors":"A. Alghanemi, M. Khan","doi":"10.1155/2023/7565988","DOIUrl":null,"url":null,"abstract":"The concept of the natural mate and the conjugate curves associated to a smooth curve in Euclidian 3-space were introduced initially by Dashmukh and others. In this paper, we give some extra results that add more properties of the natural mate and the conjugate curves associated with a smooth space curve in \n \n \n \n E\n \n \n 3\n \n \n \n . The position vectors of the natural mate and the conjugate of a given smooth curve are investigated. Also, using the position vector of the natural mate, the necessary and sufficient condition for a smooth given curve to be a Bertrand curve is introduced. Moreover, a new characterization of a general helix is introduced.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Position Vectors of the Natural Mate and Conjugate of a Space Curve\",\"authors\":\"A. Alghanemi, M. Khan\",\"doi\":\"10.1155/2023/7565988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of the natural mate and the conjugate curves associated to a smooth curve in Euclidian 3-space were introduced initially by Dashmukh and others. In this paper, we give some extra results that add more properties of the natural mate and the conjugate curves associated with a smooth space curve in \\n \\n \\n \\n E\\n \\n \\n 3\\n \\n \\n \\n . The position vectors of the natural mate and the conjugate of a given smooth curve are investigated. Also, using the position vector of the natural mate, the necessary and sufficient condition for a smooth given curve to be a Bertrand curve is introduced. Moreover, a new characterization of a general helix is introduced.\",\"PeriodicalId\":49111,\"journal\":{\"name\":\"Advances in Mathematical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7565988\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/7565988","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

摘要

自然配偶的概念和欧几里得三空间中与光滑曲线相关的共轭曲线最初是由Dashmukh等人提出的。在本文中,我们给出了一些额外的结果,增加了E3中与光滑空间曲线相关的自然配对和共轭曲线的更多性质。研究了给定光滑曲线的自然配偶和共轭的位置矢量。利用自然配偶的位置矢量,给出了光滑给定曲线为Bertrand曲线的充要条件。此外,还介绍了一般螺旋的一种新的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Position Vectors of the Natural Mate and Conjugate of a Space Curve
The concept of the natural mate and the conjugate curves associated to a smooth curve in Euclidian 3-space were introduced initially by Dashmukh and others. In this paper, we give some extra results that add more properties of the natural mate and the conjugate curves associated with a smooth space curve in E 3 . The position vectors of the natural mate and the conjugate of a given smooth curve are investigated. Also, using the position vector of the natural mate, the necessary and sufficient condition for a smooth given curve to be a Bertrand curve is introduced. Moreover, a new characterization of a general helix is introduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信