{"title":"代数表示的基本维数","authors":"F. Scavia","doi":"10.4171/cmh/500","DOIUrl":null,"url":null,"abstract":"Let $k$ be a field, $A$ a finitely generated associative $k$-algebra and $\\operatorname{Rep}_A[n]$ the functor $\\operatorname{Fields}_k\\to \\operatorname{Sets}$, which sends a field $K$ containing $k$ to the set of isomorphism classes of representations of $A_K$ of dimension at most $n$. We study the asymptotic behavior of the essential dimension of this functor, i.e., the function $r_A(n) := \\operatorname{ed}_k(\\operatorname{Rep}_A[n])$, as $n\\to\\infty$. In particular, we show that the rate of growth of $r_A(n)$ determines the representation type of $A$. That is, $r_A(n)$ is bounded from above if $A$ is of finite representation type, grows linearly if $A$ is of tame representation type and grows quadratically if A is of wild representation type. Moreover, $r_A(n)$ is a finer invariant of A, which allows us to distinguish among algebras of the same representation type.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Essential dimension of representations of algebras\",\"authors\":\"F. Scavia\",\"doi\":\"10.4171/cmh/500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k$ be a field, $A$ a finitely generated associative $k$-algebra and $\\\\operatorname{Rep}_A[n]$ the functor $\\\\operatorname{Fields}_k\\\\to \\\\operatorname{Sets}$, which sends a field $K$ containing $k$ to the set of isomorphism classes of representations of $A_K$ of dimension at most $n$. We study the asymptotic behavior of the essential dimension of this functor, i.e., the function $r_A(n) := \\\\operatorname{ed}_k(\\\\operatorname{Rep}_A[n])$, as $n\\\\to\\\\infty$. In particular, we show that the rate of growth of $r_A(n)$ determines the representation type of $A$. That is, $r_A(n)$ is bounded from above if $A$ is of finite representation type, grows linearly if $A$ is of tame representation type and grows quadratically if A is of wild representation type. Moreover, $r_A(n)$ is a finer invariant of A, which allows us to distinguish among algebras of the same representation type.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/cmh/500\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/cmh/500","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Essential dimension of representations of algebras
Let $k$ be a field, $A$ a finitely generated associative $k$-algebra and $\operatorname{Rep}_A[n]$ the functor $\operatorname{Fields}_k\to \operatorname{Sets}$, which sends a field $K$ containing $k$ to the set of isomorphism classes of representations of $A_K$ of dimension at most $n$. We study the asymptotic behavior of the essential dimension of this functor, i.e., the function $r_A(n) := \operatorname{ed}_k(\operatorname{Rep}_A[n])$, as $n\to\infty$. In particular, we show that the rate of growth of $r_A(n)$ determines the representation type of $A$. That is, $r_A(n)$ is bounded from above if $A$ is of finite representation type, grows linearly if $A$ is of tame representation type and grows quadratically if A is of wild representation type. Moreover, $r_A(n)$ is a finer invariant of A, which allows us to distinguish among algebras of the same representation type.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.