马尔可夫增长时刻——崩溃过程

Pub Date : 2021-03-08 DOI:10.1017/apr.2021.63
Nicolas Privault
{"title":"马尔可夫增长时刻——崩溃过程","authors":"Nicolas Privault","doi":"10.1017/apr.2021.63","DOIUrl":null,"url":null,"abstract":"Abstract We apply general moment identities for Poisson stochastic integrals with random integrands to the computation of the moments of Markovian growth–collapse processes. This extends existing formulas for mean and variance available in the literature to closed-form moment expressions of all orders. In comparison with other methods based on differential equations, our approach yields explicit summations in terms of the time parameter. We also treat the case of the associated embedded chain, and provide recursive codes in Maple and Mathematica for the computation of moments and cumulants of any order with arbitrary cut-off moment sequences and jump size functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Moments of Markovian growth–collapse processes\",\"authors\":\"Nicolas Privault\",\"doi\":\"10.1017/apr.2021.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We apply general moment identities for Poisson stochastic integrals with random integrands to the computation of the moments of Markovian growth–collapse processes. This extends existing formulas for mean and variance available in the literature to closed-form moment expressions of all orders. In comparison with other methods based on differential equations, our approach yields explicit summations in terms of the time parameter. We also treat the case of the associated embedded chain, and provide recursive codes in Maple and Mathematica for the computation of moments and cumulants of any order with arbitrary cut-off moment sequences and jump size functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2021.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2021.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要我们将具有随机被积函数的泊松随机积分的一般矩恒等式应用于马尔可夫增长-崩溃过程的矩的计算。这将文献中现有的均值和方差公式扩展到所有阶的闭合形式矩表达式。与其他基于微分方程的方法相比,我们的方法在时间参数方面产生了显式求和。我们还处理了相关嵌入链的情况,并在Maple和Mathematica中提供了递归代码,用于计算具有任意截止矩序列和跳跃大小函数的任意阶矩和累积量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Moments of Markovian growth–collapse processes
Abstract We apply general moment identities for Poisson stochastic integrals with random integrands to the computation of the moments of Markovian growth–collapse processes. This extends existing formulas for mean and variance available in the literature to closed-form moment expressions of all orders. In comparison with other methods based on differential equations, our approach yields explicit summations in terms of the time parameter. We also treat the case of the associated embedded chain, and provide recursive codes in Maple and Mathematica for the computation of moments and cumulants of any order with arbitrary cut-off moment sequences and jump size functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信