基于人工神经网络的磁制冷装置建模

Pub Date : 2021-10-01 DOI:10.4018/ijeoe.2021100105
Y. Chiba, Y. Marif, N. Henini, A. Tlemçani
{"title":"基于人工神经网络的磁制冷装置建模","authors":"Y. Chiba, Y. Marif, N. Henini, A. Tlemçani","doi":"10.4018/ijeoe.2021100105","DOIUrl":null,"url":null,"abstract":"The aim of this work is to use multi-layered perceptron artificial neural networks and multiple linear regressions models to predict the efficiency of the magnetic refrigeration cycle device operating near room temperature. For this purpose, the experimental data collection was used in order to predict coefficient of performance and temperature span for active magnetic refrigeration device. In addition, the operating parameters of active magnetic refrigerator cycle are used for solid magnetocaloric material under application 1.5 T magnetic fields. The obtained results including temperature span and coefficient of performance are presented and discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling of Magnetic Refrigeration Device by Using Artificial Neural Networks Approach\",\"authors\":\"Y. Chiba, Y. Marif, N. Henini, A. Tlemçani\",\"doi\":\"10.4018/ijeoe.2021100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to use multi-layered perceptron artificial neural networks and multiple linear regressions models to predict the efficiency of the magnetic refrigeration cycle device operating near room temperature. For this purpose, the experimental data collection was used in order to predict coefficient of performance and temperature span for active magnetic refrigeration device. In addition, the operating parameters of active magnetic refrigerator cycle are used for solid magnetocaloric material under application 1.5 T magnetic fields. The obtained results including temperature span and coefficient of performance are presented and discussed.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijeoe.2021100105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.2021100105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本工作的目的是使用多层感知器人工神经网络和多元线性回归模型来预测磁制冷循环装置在室温附近运行的效率。为此,利用实验数据收集来预测主动磁制冷装置的性能系数和温度跨度。此外,还将主动磁制冷循环的运行参数用于固体磁热材料在1.5T磁场下的应用。给出并讨论了所获得的结果,包括温度跨度和性能系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Modeling of Magnetic Refrigeration Device by Using Artificial Neural Networks Approach
The aim of this work is to use multi-layered perceptron artificial neural networks and multiple linear regressions models to predict the efficiency of the magnetic refrigeration cycle device operating near room temperature. For this purpose, the experimental data collection was used in order to predict coefficient of performance and temperature span for active magnetic refrigeration device. In addition, the operating parameters of active magnetic refrigerator cycle are used for solid magnetocaloric material under application 1.5 T magnetic fields. The obtained results including temperature span and coefficient of performance are presented and discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信