CBSF:一种新的基于神经网络权值的对接经验评分函数

Q2 Mathematics
R. Syrlybaeva, M. Talipov
{"title":"CBSF:一种新的基于神经网络权值的对接经验评分函数","authors":"R. Syrlybaeva, M. Talipov","doi":"10.1515/cmb-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract A new CBSF empirical scoring function for the estimation of binding energies between proteins and small molecules is proposed in this report. The final score is obtained as a sum of three energy terms calculated using descriptors based on a simple counting of the interacting protein-ligand atomic pairs. All the required weighting coefficients for this method were derived from a pretrained neural network. The proposed method demonstrates a high accuracy and reproduces binding energies of protein-ligand complexes from the CASF-2016 test set with a standard deviation of 2.063 kcal/mol (1.511 log units) and an average error of 1.682 kcal/mol (1.232 log units). Thus, CBSF has a significant potential for the development of rapid and accurate estimates of the protein-ligand interaction energies.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"7 1","pages":"121 - 134"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2019-0009","citationCount":"0","resultStr":"{\"title\":\"CBSF: A New Empirical Scoring Function for Docking Parameterized by Weights of Neural Network\",\"authors\":\"R. Syrlybaeva, M. Talipov\",\"doi\":\"10.1515/cmb-2019-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A new CBSF empirical scoring function for the estimation of binding energies between proteins and small molecules is proposed in this report. The final score is obtained as a sum of three energy terms calculated using descriptors based on a simple counting of the interacting protein-ligand atomic pairs. All the required weighting coefficients for this method were derived from a pretrained neural network. The proposed method demonstrates a high accuracy and reproduces binding energies of protein-ligand complexes from the CASF-2016 test set with a standard deviation of 2.063 kcal/mol (1.511 log units) and an average error of 1.682 kcal/mol (1.232 log units). Thus, CBSF has a significant potential for the development of rapid and accurate estimates of the protein-ligand interaction energies.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"7 1\",\"pages\":\"121 - 134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cmb-2019-0009\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2019-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一种新的CBSF经验评分函数,用于估计蛋白质和小分子之间的结合能。最终得分是根据相互作用的蛋白质-配体原子对的简单计数,使用描述符计算的三个能量项的总和。该方法所需的所有加权系数都是从预先训练的神经网络中导出的。所提出的方法证明了高精度,并再现了来自CASF-2016测试集的蛋白质-配体复合物的结合能,标准偏差为2.063 kcal/mol(1.511 log单位),平均误差为1.682 kca/mol(1.232 log单位)。因此,CBSF在快速准确估计蛋白质-配体相互作用能方面具有重要潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CBSF: A New Empirical Scoring Function for Docking Parameterized by Weights of Neural Network
Abstract A new CBSF empirical scoring function for the estimation of binding energies between proteins and small molecules is proposed in this report. The final score is obtained as a sum of three energy terms calculated using descriptors based on a simple counting of the interacting protein-ligand atomic pairs. All the required weighting coefficients for this method were derived from a pretrained neural network. The proposed method demonstrates a high accuracy and reproduces binding energies of protein-ligand complexes from the CASF-2016 test set with a standard deviation of 2.063 kcal/mol (1.511 log units) and an average error of 1.682 kcal/mol (1.232 log units). Thus, CBSF has a significant potential for the development of rapid and accurate estimates of the protein-ligand interaction energies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信