{"title":"修正:营养生态驱动食蚜昆虫(鞘翅目和锦翅目)和食蚜昆虫(夜蛾科,鳞翅目)丰度的年变化:来自光诱器的证据","authors":"Novák, Martinková, Saska, Kulfan, Holecová, Jauschová, Zach","doi":"10.1093/aesa/saad012","DOIUrl":null,"url":null,"abstract":"Using seventeen-year records of daily light trap catches of predatory Neuroptera (Chrysopidae, 13 species) and Coleoptera (Coccinellidae, 10 species), and of phytophagous Lepidoptera (Noctuidae, 79 species) we tested a hypothesis predicting that the range of annual fluctuations of catch size is greater in aphidophages, whose diet occurs irregularly and locally, than in phytophages, whose diet is available regularly and abundantly. The ranges of fluctuations of annual catches measured as the coefficient of variance (standard deviation expressed as a percentage of the average) of detrended annual catches were significantly greater in Chrysopidae (84 ± 7.1%) and Coccinellidae (121 ± 14.0%) than in Noctuidae (66 ± 2.6%). The difference between aphidophages and phytophages remained when we tested differences between the former and the samples of Noctuidae consisting only of those species whose characteristics (abundance, length and timing of flight period, number of generations per season, overwintering stage) were the same as in aphidophages. Similarly, no differences were found between sets of Noctuidae species that have characteristics (abundance, voltinism, period of flight activity) similar to aphidophages and sets of Noctuidae species that have contrary characteristics. Flight abilities of aphidophages are smaller than those of Noctuidae. As a result of this difference a light trap collects populations of aphidophages from a smaller area than populations of Noctuidae. Thus the extent of fluctuations of catch size of aphidophagous and phytophagous species is influenced both by annual differences in food availability and by differences in size of the area from which the individuals assembling to the light source are recruited.","PeriodicalId":8076,"journal":{"name":"Annals of The Entomological Society of America","volume":"116 1","pages":"238 - 238"},"PeriodicalIF":3.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correction to: Trophic Ecology Drives Annual Variation in Abundance of Aphidophagous (Coccinellidae, Coleoptera and Chrysopidae, Neuroptera) and Phytophagous (Noctuidae, Lepidoptera) Insects: Evidence From Light Traps\",\"authors\":\"Novák, Martinková, Saska, Kulfan, Holecová, Jauschová, Zach\",\"doi\":\"10.1093/aesa/saad012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using seventeen-year records of daily light trap catches of predatory Neuroptera (Chrysopidae, 13 species) and Coleoptera (Coccinellidae, 10 species), and of phytophagous Lepidoptera (Noctuidae, 79 species) we tested a hypothesis predicting that the range of annual fluctuations of catch size is greater in aphidophages, whose diet occurs irregularly and locally, than in phytophages, whose diet is available regularly and abundantly. The ranges of fluctuations of annual catches measured as the coefficient of variance (standard deviation expressed as a percentage of the average) of detrended annual catches were significantly greater in Chrysopidae (84 ± 7.1%) and Coccinellidae (121 ± 14.0%) than in Noctuidae (66 ± 2.6%). The difference between aphidophages and phytophages remained when we tested differences between the former and the samples of Noctuidae consisting only of those species whose characteristics (abundance, length and timing of flight period, number of generations per season, overwintering stage) were the same as in aphidophages. Similarly, no differences were found between sets of Noctuidae species that have characteristics (abundance, voltinism, period of flight activity) similar to aphidophages and sets of Noctuidae species that have contrary characteristics. Flight abilities of aphidophages are smaller than those of Noctuidae. As a result of this difference a light trap collects populations of aphidophages from a smaller area than populations of Noctuidae. Thus the extent of fluctuations of catch size of aphidophagous and phytophagous species is influenced both by annual differences in food availability and by differences in size of the area from which the individuals assembling to the light source are recruited.\",\"PeriodicalId\":8076,\"journal\":{\"name\":\"Annals of The Entomological Society of America\",\"volume\":\"116 1\",\"pages\":\"238 - 238\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of The Entomological Society of America\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/aesa/saad012\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of The Entomological Society of America","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/aesa/saad012","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Correction to: Trophic Ecology Drives Annual Variation in Abundance of Aphidophagous (Coccinellidae, Coleoptera and Chrysopidae, Neuroptera) and Phytophagous (Noctuidae, Lepidoptera) Insects: Evidence From Light Traps
Using seventeen-year records of daily light trap catches of predatory Neuroptera (Chrysopidae, 13 species) and Coleoptera (Coccinellidae, 10 species), and of phytophagous Lepidoptera (Noctuidae, 79 species) we tested a hypothesis predicting that the range of annual fluctuations of catch size is greater in aphidophages, whose diet occurs irregularly and locally, than in phytophages, whose diet is available regularly and abundantly. The ranges of fluctuations of annual catches measured as the coefficient of variance (standard deviation expressed as a percentage of the average) of detrended annual catches were significantly greater in Chrysopidae (84 ± 7.1%) and Coccinellidae (121 ± 14.0%) than in Noctuidae (66 ± 2.6%). The difference between aphidophages and phytophages remained when we tested differences between the former and the samples of Noctuidae consisting only of those species whose characteristics (abundance, length and timing of flight period, number of generations per season, overwintering stage) were the same as in aphidophages. Similarly, no differences were found between sets of Noctuidae species that have characteristics (abundance, voltinism, period of flight activity) similar to aphidophages and sets of Noctuidae species that have contrary characteristics. Flight abilities of aphidophages are smaller than those of Noctuidae. As a result of this difference a light trap collects populations of aphidophages from a smaller area than populations of Noctuidae. Thus the extent of fluctuations of catch size of aphidophagous and phytophagous species is influenced both by annual differences in food availability and by differences in size of the area from which the individuals assembling to the light source are recruited.
期刊介绍:
The Annals of the Entomological Society of America exists to stimulate interdisciplinary dialogue across the entomological disciplines and to advance cooperative interaction among diverse groups of entomologists. It seeks to attract and publish cutting-edge research, reviews, collections of articles on a common topic of broad interest, and discussion of topics with national or international importance. We especially welcome articles covering developing areas of research, controversial issues or debate, and topics of importance to society. Manuscripts that are primarily reports of new species, methodology, pest management, or the biology of single species generally will be referred to other journals of the ESA. The most important criteria for acceptance are quality of work and breadth of interest to the readership.