{"title":"具有微妙季节性的旅游需求:识别与预测","authors":"Haiyan Wang, T. Hu, Huihui Wu","doi":"10.1177/13548166231184300","DOIUrl":null,"url":null,"abstract":"Existing studies on tourism seasonality have been mainly identified at annual or monthly level and the seasonality in tourism demand forecasting has always been addressed by modeling season patterns. However, annual or monthly seasonality is coarse-grained and can’t capture the subtle changes emerging both in tourism theory and practice. This study recognizes tourism seasonality based on intra-day patterns and inter-day similarity and suggests a novel approach to addressing seasonality in tourism demand forecasting. The proposed three-step method contains tourism seasonality recognition, tourism seasonality matching, and tourism demand forecasting. The empirical findings, based on two attractions in China, demonstrate that the proposed method based on dynamic time warping and density-peak clustering can precisely capture tourism seasonality at the daily level. The method can also detect special tourism periods or subtle changes in seasonality, such as staggered peak travel phenomenon. Superior forecasting performance with seasonality matching is also revealed. This study sheds new light on tourism seasonality recognition and contributes to forecasting methodology.","PeriodicalId":23204,"journal":{"name":"Tourism Economics","volume":"29 1","pages":"1865 - 1889"},"PeriodicalIF":3.6000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tourism demand with subtle seasonality: Recognition and forecasting\",\"authors\":\"Haiyan Wang, T. Hu, Huihui Wu\",\"doi\":\"10.1177/13548166231184300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing studies on tourism seasonality have been mainly identified at annual or monthly level and the seasonality in tourism demand forecasting has always been addressed by modeling season patterns. However, annual or monthly seasonality is coarse-grained and can’t capture the subtle changes emerging both in tourism theory and practice. This study recognizes tourism seasonality based on intra-day patterns and inter-day similarity and suggests a novel approach to addressing seasonality in tourism demand forecasting. The proposed three-step method contains tourism seasonality recognition, tourism seasonality matching, and tourism demand forecasting. The empirical findings, based on two attractions in China, demonstrate that the proposed method based on dynamic time warping and density-peak clustering can precisely capture tourism seasonality at the daily level. The method can also detect special tourism periods or subtle changes in seasonality, such as staggered peak travel phenomenon. Superior forecasting performance with seasonality matching is also revealed. This study sheds new light on tourism seasonality recognition and contributes to forecasting methodology.\",\"PeriodicalId\":23204,\"journal\":{\"name\":\"Tourism Economics\",\"volume\":\"29 1\",\"pages\":\"1865 - 1889\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tourism Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1177/13548166231184300\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tourism Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1177/13548166231184300","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Tourism demand with subtle seasonality: Recognition and forecasting
Existing studies on tourism seasonality have been mainly identified at annual or monthly level and the seasonality in tourism demand forecasting has always been addressed by modeling season patterns. However, annual or monthly seasonality is coarse-grained and can’t capture the subtle changes emerging both in tourism theory and practice. This study recognizes tourism seasonality based on intra-day patterns and inter-day similarity and suggests a novel approach to addressing seasonality in tourism demand forecasting. The proposed three-step method contains tourism seasonality recognition, tourism seasonality matching, and tourism demand forecasting. The empirical findings, based on two attractions in China, demonstrate that the proposed method based on dynamic time warping and density-peak clustering can precisely capture tourism seasonality at the daily level. The method can also detect special tourism periods or subtle changes in seasonality, such as staggered peak travel phenomenon. Superior forecasting performance with seasonality matching is also revealed. This study sheds new light on tourism seasonality recognition and contributes to forecasting methodology.
期刊介绍:
Tourism Economics, published quarterly, covers the business aspects of tourism in the wider context. It takes account of constraints on development, such as social and community interests and the sustainable use of tourism and recreation resources, and inputs into the production process. The definition of tourism used includes tourist trips taken for all purposes, embracing both stay and day visitors. Articles address the components of the tourism product (accommodation; restaurants; merchandizing; attractions; transport; entertainment; tourist activities); and the economic organization of tourism at micro and macro levels (market structure; role of public/private sectors; community interests; strategic planning; marketing; finance; economic development).