Peren Arin, M. Minniti, S. Murtinu, Nicola Spagnolo
{"title":"拐点、扭结和跳跃:一种检测非线性的统计方法","authors":"Peren Arin, M. Minniti, S. Murtinu, Nicola Spagnolo","doi":"10.1177/10944281211058466","DOIUrl":null,"url":null,"abstract":"Inflection points, kinks, and jumps identify places where the relationship between dependent and independent variables switches in some important way. Although these switch points are often mentioned in management research, their presence in the data is either ignored, or postulated ad hoc by testing arbitrarily specified functional forms (e.g., U or inverted U-shaped relationships). This is problematic if we want accurate tests for our theories. To address this issue, we provide an integrative framework for the identification of nonlinearities. Our approach constitutes a precursor step that researchers will want to conduct before deciding which estimation model may be most appropriate. We also provide instructions on how our approach can be implemented, and a replicable illustration of the procedure. Our illustrative example shows how the identification of endogenous switch points may lead to significantly different conclusions compared to those obtained when switch points are ignored or their existence is conjectured arbitrarily. This supports our claim that capturing empirically the presence of nonlinearity is important and should be included in our empirical investigations.","PeriodicalId":19689,"journal":{"name":"Organizational Research Methods","volume":"25 1","pages":"786 - 814"},"PeriodicalIF":8.9000,"publicationDate":"2021-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Inflection Points, Kinks, and Jumps: A Statistical Approach to Detecting Nonlinearities\",\"authors\":\"Peren Arin, M. Minniti, S. Murtinu, Nicola Spagnolo\",\"doi\":\"10.1177/10944281211058466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inflection points, kinks, and jumps identify places where the relationship between dependent and independent variables switches in some important way. Although these switch points are often mentioned in management research, their presence in the data is either ignored, or postulated ad hoc by testing arbitrarily specified functional forms (e.g., U or inverted U-shaped relationships). This is problematic if we want accurate tests for our theories. To address this issue, we provide an integrative framework for the identification of nonlinearities. Our approach constitutes a precursor step that researchers will want to conduct before deciding which estimation model may be most appropriate. We also provide instructions on how our approach can be implemented, and a replicable illustration of the procedure. Our illustrative example shows how the identification of endogenous switch points may lead to significantly different conclusions compared to those obtained when switch points are ignored or their existence is conjectured arbitrarily. This supports our claim that capturing empirically the presence of nonlinearity is important and should be included in our empirical investigations.\",\"PeriodicalId\":19689,\"journal\":{\"name\":\"Organizational Research Methods\",\"volume\":\"25 1\",\"pages\":\"786 - 814\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2021-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organizational Research Methods\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1177/10944281211058466\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organizational Research Methods","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1177/10944281211058466","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
Inflection Points, Kinks, and Jumps: A Statistical Approach to Detecting Nonlinearities
Inflection points, kinks, and jumps identify places where the relationship between dependent and independent variables switches in some important way. Although these switch points are often mentioned in management research, their presence in the data is either ignored, or postulated ad hoc by testing arbitrarily specified functional forms (e.g., U or inverted U-shaped relationships). This is problematic if we want accurate tests for our theories. To address this issue, we provide an integrative framework for the identification of nonlinearities. Our approach constitutes a precursor step that researchers will want to conduct before deciding which estimation model may be most appropriate. We also provide instructions on how our approach can be implemented, and a replicable illustration of the procedure. Our illustrative example shows how the identification of endogenous switch points may lead to significantly different conclusions compared to those obtained when switch points are ignored or their existence is conjectured arbitrarily. This supports our claim that capturing empirically the presence of nonlinearity is important and should be included in our empirical investigations.
期刊介绍:
Organizational Research Methods (ORM) was founded with the aim of introducing pertinent methodological advancements to researchers in organizational sciences. The objective of ORM is to promote the application of current and emerging methodologies to advance both theory and research practices. Articles are expected to be comprehensible to readers with a background consistent with the methodological and statistical training provided in contemporary organizational sciences doctoral programs. The text should be presented in a manner that facilitates accessibility. For instance, highly technical content should be placed in appendices, and authors are encouraged to include example data and computer code when relevant. Additionally, authors should explicitly outline how their contribution has the potential to advance organizational theory and research practice.