关于非俱乐部同构Aronszajn树的一些结果

IF 0.6 3区 数学 Q2 LOGIC
J. Chavez, J. Krueger
{"title":"关于非俱乐部同构Aronszajn树的一些结果","authors":"J. Chavez, J. Krueger","doi":"10.1215/00294527-2022-0007","DOIUrl":null,"url":null,"abstract":"Let λ be a regular cardinal satisfying λ<λ = λ and ♦(Sλ + λ ). Then there exists a family of 2λ + many completely club rigid special λ+-Aronszajn trees which are pairwise far. In this article we will be concerned with building Aronszajn trees which are not club isomorphic and have strong rigidity properties. This topic goes back to Gaifman-Specker [4], who proved that if λ is a regular cardinal satisfying λ = λ, then there exists a family of 2 + many normal λ-complete λ-Aronszajn trees which are pairwise non-isomorphic. Abraham [1] and Todorcevic [7] constructed in ZFC ω1-Aronszajn trees which are rigid, that is, have no automorphisms other than the identity. Later the focus shifted from isomorphisms between trees to club isomorphisms. Abraham-Shelah [2] proved that under PFA, any two normal ω1Aronszajn trees are club isomorphic. Krueger [6] provided a generalization of this result to higher cardinals. Abraham-Shelah [2] also showed that the weak diamond principle on ω1 implies the existence of a family of 2 ω1 many normal club rigid ω1-Aronszajn trees which are pairwise not club embeddable into each other. Building off of this work, we will use the diamond principle to construct a family of pairwise non-club isomorphic Aronszajn trees. Specifically, assume that λ is a regular cardinal satisfying λ = λ and the diamond principle ♦(S + λ ) holds, where S + λ := {α < λ : cf(α) = λ}. Then there exists a family {Tα : α < 2 +} of normal λ-complete special λ-Aronszajn trees such that for each α < 2 + , the only club embedding from a downwards closed normal subtree of Tα into Tα is the identity, and for all α < β < 2 + , Tα and Tβ do not contain club isomorphic downwards closed normal subtrees. We also discuss some related results, such as obtaining a large family of Suslin trees with similar properties and generalizing the Abraham-Shelah result on weak diamond to higher cardinals.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Results on Non-Club Isomorphic Aronszajn Trees\",\"authors\":\"J. Chavez, J. Krueger\",\"doi\":\"10.1215/00294527-2022-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let λ be a regular cardinal satisfying λ<λ = λ and ♦(Sλ + λ ). Then there exists a family of 2λ + many completely club rigid special λ+-Aronszajn trees which are pairwise far. In this article we will be concerned with building Aronszajn trees which are not club isomorphic and have strong rigidity properties. This topic goes back to Gaifman-Specker [4], who proved that if λ is a regular cardinal satisfying λ = λ, then there exists a family of 2 + many normal λ-complete λ-Aronszajn trees which are pairwise non-isomorphic. Abraham [1] and Todorcevic [7] constructed in ZFC ω1-Aronszajn trees which are rigid, that is, have no automorphisms other than the identity. Later the focus shifted from isomorphisms between trees to club isomorphisms. Abraham-Shelah [2] proved that under PFA, any two normal ω1Aronszajn trees are club isomorphic. Krueger [6] provided a generalization of this result to higher cardinals. Abraham-Shelah [2] also showed that the weak diamond principle on ω1 implies the existence of a family of 2 ω1 many normal club rigid ω1-Aronszajn trees which are pairwise not club embeddable into each other. Building off of this work, we will use the diamond principle to construct a family of pairwise non-club isomorphic Aronszajn trees. Specifically, assume that λ is a regular cardinal satisfying λ = λ and the diamond principle ♦(S + λ ) holds, where S + λ := {α < λ : cf(α) = λ}. Then there exists a family {Tα : α < 2 +} of normal λ-complete special λ-Aronszajn trees such that for each α < 2 + , the only club embedding from a downwards closed normal subtree of Tα into Tα is the identity, and for all α < β < 2 + , Tα and Tβ do not contain club isomorphic downwards closed normal subtrees. We also discuss some related results, such as obtaining a large family of Suslin trees with similar properties and generalizing the Abraham-Shelah result on weak diamond to higher cardinals.\",\"PeriodicalId\":51259,\"journal\":{\"name\":\"Notre Dame Journal of Formal Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notre Dame Journal of Formal Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00294527-2022-0007\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00294527-2022-0007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 1

摘要

设λ为满足λ<λ = λ和♦(λ + λ)的正则基数。然后存在一对远的2λ +多个完全棒刚性特殊λ+-Aronszajn树族。在这篇文章中,我们将关注构造非俱乐部同构且具有强刚性性质的Aronszajn树。这个话题可以追溯到Gaifman-Specker[4],他证明了如果λ是一个满足λ = λ的正则基,那么就存在一个由2 +许多对非同构的正规λ-完备λ- aronszajn树组成的族。在ZFC ω1-Aronszajn树中构造的Abraham[1]和Todorcevic[7]是刚性的,即除了恒等之外没有自同构。后来,重点从树之间的同构转移到俱乐部同构。Abraham-Shelah[2]证明了在PFA条件下,任意两个正规ω1Aronszajn树都是俱乐部同构的。Krueger[6]将这个结果推广到更高的基数。亚伯拉罕-谢拉[2]还证明了ω1上的弱菱形原理暗示了ω1上存在一族2 ω1的许多正棒刚性ω1- aronszajn树,这些树彼此互为非棒嵌入。在这项工作的基础上,我们将使用菱形原理来构建一对非俱乐部同构Aronszajn树族。具体地说,假设λ是满足λ = λ的正则基数,并且菱形原理♦(S + λ)成立,其中S + λ:= {α < λ: cf(α) = λ}。然后存在一个正规λ-完备λ-Aronszajn树族{Tα: α < 2 +},使得对于每一个α < 2 +,从Tα的下闭正规子树嵌入到Tα的唯一的俱乐部是单位,并且对于所有α < β < 2 +, Tα和Tβ不包含俱乐部同构的下闭正规子树。我们还讨论了一些相关的结果,例如获得了一个具有相似性质的Suslin树大族,并将弱菱形上的Abraham-Shelah结果推广到更高的基数上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Results on Non-Club Isomorphic Aronszajn Trees
Let λ be a regular cardinal satisfying λ<λ = λ and ♦(Sλ + λ ). Then there exists a family of 2λ + many completely club rigid special λ+-Aronszajn trees which are pairwise far. In this article we will be concerned with building Aronszajn trees which are not club isomorphic and have strong rigidity properties. This topic goes back to Gaifman-Specker [4], who proved that if λ is a regular cardinal satisfying λ = λ, then there exists a family of 2 + many normal λ-complete λ-Aronszajn trees which are pairwise non-isomorphic. Abraham [1] and Todorcevic [7] constructed in ZFC ω1-Aronszajn trees which are rigid, that is, have no automorphisms other than the identity. Later the focus shifted from isomorphisms between trees to club isomorphisms. Abraham-Shelah [2] proved that under PFA, any two normal ω1Aronszajn trees are club isomorphic. Krueger [6] provided a generalization of this result to higher cardinals. Abraham-Shelah [2] also showed that the weak diamond principle on ω1 implies the existence of a family of 2 ω1 many normal club rigid ω1-Aronszajn trees which are pairwise not club embeddable into each other. Building off of this work, we will use the diamond principle to construct a family of pairwise non-club isomorphic Aronszajn trees. Specifically, assume that λ is a regular cardinal satisfying λ = λ and the diamond principle ♦(S + λ ) holds, where S + λ := {α < λ : cf(α) = λ}. Then there exists a family {Tα : α < 2 +} of normal λ-complete special λ-Aronszajn trees such that for each α < 2 + , the only club embedding from a downwards closed normal subtree of Tα into Tα is the identity, and for all α < β < 2 + , Tα and Tβ do not contain club isomorphic downwards closed normal subtrees. We also discuss some related results, such as obtaining a large family of Suslin trees with similar properties and generalizing the Abraham-Shelah result on weak diamond to higher cardinals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
14.30%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信