Adnan I. Khdair, Ghaida Abu-Rumman, Sawasn I. Khdair
{"title":"水分和密度对橄榄饼堆肥导热系数的影响:实验和数学模型","authors":"Adnan I. Khdair, Ghaida Abu-Rumman, Sawasn I. Khdair","doi":"10.1080/1065657X.2020.1755386","DOIUrl":null,"url":null,"abstract":"Abstract The behaviors of bioactive compounds treating gaseous pollutants in biofilters and in the compost used as soil amendment and in green roof buildings are controlled by their thermal properties. There is a lack of information on thermal conductivity of olive cake compost (OCC), K as affected by water content and bulk density. Thermal conductivities (K) of 40 samples of (OCC) were determined experimentally at bulk densities (400–950 kg/m3) and moisture contents (10%–90%) using a single thermal probe method. The results showed that thermal conductivity increased linearly as water content, and bulk density increased and with a decrease in air filled porosity. Simple linear relationships were developed between compost thermal conductivity and dry bulk density and the degree of saturation. The experimental values were close to those reported recently for leaf compost and green roof soils. The compost at water content of 90% showed the highest thermal conductivity (K) of 0.60 W/m.k, which indicate that compost, can be used as good cheep insulator in geothermal heat storage application and as an additional echo-friendly insulation layer in green roof building which might be considered as a good means of passive energy saving there.","PeriodicalId":10714,"journal":{"name":"Compost Science & Utilization","volume":"29 1","pages":"1 - 8"},"PeriodicalIF":2.0000,"publicationDate":"2020-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1065657X.2020.1755386","citationCount":"1","resultStr":"{\"title\":\"Thermal Conductivity of Olive Cake Compost (OCC) as Affected by Moisture and Density: An Experimental and Mathematical Modeling\",\"authors\":\"Adnan I. Khdair, Ghaida Abu-Rumman, Sawasn I. Khdair\",\"doi\":\"10.1080/1065657X.2020.1755386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The behaviors of bioactive compounds treating gaseous pollutants in biofilters and in the compost used as soil amendment and in green roof buildings are controlled by their thermal properties. There is a lack of information on thermal conductivity of olive cake compost (OCC), K as affected by water content and bulk density. Thermal conductivities (K) of 40 samples of (OCC) were determined experimentally at bulk densities (400–950 kg/m3) and moisture contents (10%–90%) using a single thermal probe method. The results showed that thermal conductivity increased linearly as water content, and bulk density increased and with a decrease in air filled porosity. Simple linear relationships were developed between compost thermal conductivity and dry bulk density and the degree of saturation. The experimental values were close to those reported recently for leaf compost and green roof soils. The compost at water content of 90% showed the highest thermal conductivity (K) of 0.60 W/m.k, which indicate that compost, can be used as good cheep insulator in geothermal heat storage application and as an additional echo-friendly insulation layer in green roof building which might be considered as a good means of passive energy saving there.\",\"PeriodicalId\":10714,\"journal\":{\"name\":\"Compost Science & Utilization\",\"volume\":\"29 1\",\"pages\":\"1 - 8\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1065657X.2020.1755386\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compost Science & Utilization\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/1065657X.2020.1755386\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compost Science & Utilization","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1065657X.2020.1755386","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Thermal Conductivity of Olive Cake Compost (OCC) as Affected by Moisture and Density: An Experimental and Mathematical Modeling
Abstract The behaviors of bioactive compounds treating gaseous pollutants in biofilters and in the compost used as soil amendment and in green roof buildings are controlled by their thermal properties. There is a lack of information on thermal conductivity of olive cake compost (OCC), K as affected by water content and bulk density. Thermal conductivities (K) of 40 samples of (OCC) were determined experimentally at bulk densities (400–950 kg/m3) and moisture contents (10%–90%) using a single thermal probe method. The results showed that thermal conductivity increased linearly as water content, and bulk density increased and with a decrease in air filled porosity. Simple linear relationships were developed between compost thermal conductivity and dry bulk density and the degree of saturation. The experimental values were close to those reported recently for leaf compost and green roof soils. The compost at water content of 90% showed the highest thermal conductivity (K) of 0.60 W/m.k, which indicate that compost, can be used as good cheep insulator in geothermal heat storage application and as an additional echo-friendly insulation layer in green roof building which might be considered as a good means of passive energy saving there.
期刊介绍:
4 issues per year
Compost Science & Utilization is currently abstracted/indexed in: CABI Agriculture & Environment Abstracts, CSA Biotechnology and Environmental Engineering Abstracts, EBSCOhost Abstracts, Elsevier Compendex and GEOBASE Abstracts, PubMed, ProQuest Science Abstracts, and Thomson Reuters Biological Abstracts and Science Citation Index