{"title":"蒸汽朋克机器学习","authors":"T. Kelly","doi":"10.1145/3511543","DOIUrl":null,"url":null,"abstract":"Fitting models to data is all the rage nowadays but has long been an essential skill of engineers. Veterans know that real-world systems foil textbook techniques by interleaving routine operating conditions with bouts of overload and failure; to be practical, a method must model the former without distortion by the latter. Surprisingly effective aid comes from an unlikely quarter: a simple and intuitive model-fitting approach that predates the Babbage Engine. The foundation of industrial-strength decision support and anomaly detection for production datacenters, this approach yields accurate yet intelligible models without hand-holding or fuss. It is easy to practice with modern analytics software and is widely applicable to computing systems and beyond.","PeriodicalId":39042,"journal":{"name":"Queue","volume":"19 1","pages":"5 - 17"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steampunk Machine Learning\",\"authors\":\"T. Kelly\",\"doi\":\"10.1145/3511543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fitting models to data is all the rage nowadays but has long been an essential skill of engineers. Veterans know that real-world systems foil textbook techniques by interleaving routine operating conditions with bouts of overload and failure; to be practical, a method must model the former without distortion by the latter. Surprisingly effective aid comes from an unlikely quarter: a simple and intuitive model-fitting approach that predates the Babbage Engine. The foundation of industrial-strength decision support and anomaly detection for production datacenters, this approach yields accurate yet intelligible models without hand-holding or fuss. It is easy to practice with modern analytics software and is widely applicable to computing systems and beyond.\",\"PeriodicalId\":39042,\"journal\":{\"name\":\"Queue\",\"volume\":\"19 1\",\"pages\":\"5 - 17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Queue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Queue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Fitting models to data is all the rage nowadays but has long been an essential skill of engineers. Veterans know that real-world systems foil textbook techniques by interleaving routine operating conditions with bouts of overload and failure; to be practical, a method must model the former without distortion by the latter. Surprisingly effective aid comes from an unlikely quarter: a simple and intuitive model-fitting approach that predates the Babbage Engine. The foundation of industrial-strength decision support and anomaly detection for production datacenters, this approach yields accurate yet intelligible models without hand-holding or fuss. It is easy to practice with modern analytics software and is widely applicable to computing systems and beyond.