A. Akinwande, D. Moskovskikh, E. Romanovskaia, O. Balogun, J. Kumar, V. Romanovski
{"title":"极值顶点设计在3d打印轻质高熵合金/B4C/ZrO2/钛三杂化航空复合材料成分优化中的适用性","authors":"A. Akinwande, D. Moskovskikh, E. Romanovskaia, O. Balogun, J. Kumar, V. Romanovski","doi":"10.3390/mca28020054","DOIUrl":null,"url":null,"abstract":"Recent studies have shown the benefits of utilizing ceramic particles as reinforcement in metal alloys; nevertheless, certain drawbacks, including loss of ductility, embrittlement, and decreases in toughness, have been noted. For the objective of obtaining balanced performance, experts have suggested the addition of metal particles as supplement to the ceramic reinforcement. Consequently, high-performance metal hybrid composites have been developed. However, achieving the optimal mix for the reinforcement combination with regards to the optimal performance of developed composite remains a challenge. This research aimed to determine the optimal mixture of Al50Cu10Sn5Mg20Zn10Ti5 lightweight high-entropy alloy (LHEA), B4C, and ZrO2 for the fabrication of trihybrid titanium composites via direct laser deposition. A mixture design was involved in the experimental design, and experimental data were modeled and optimized to achieve the optimal performance of the trihybrid composite. The ANOVA, response surface plots, and ternary maps analyses of the experimental results revealed that various combinations of reinforcement particles displayed a variety of response trends. Moreover, the analysis showed that these reinforcements significantly contributed to the magnitudes and trends of the responses. The generated models were competent for predicting response, and the best formulation consisted of 8.4% LHEA, 1.2% B4C, and 2.4% ZrO2.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Applicability of Extreme Vertices Design in the Compositional Optimization of 3D-Printed Lightweight High-Entropy-Alloy/B4C/ZrO2/Titanium Trihybrid Aero-Composite\",\"authors\":\"A. Akinwande, D. Moskovskikh, E. Romanovskaia, O. Balogun, J. Kumar, V. Romanovski\",\"doi\":\"10.3390/mca28020054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have shown the benefits of utilizing ceramic particles as reinforcement in metal alloys; nevertheless, certain drawbacks, including loss of ductility, embrittlement, and decreases in toughness, have been noted. For the objective of obtaining balanced performance, experts have suggested the addition of metal particles as supplement to the ceramic reinforcement. Consequently, high-performance metal hybrid composites have been developed. However, achieving the optimal mix for the reinforcement combination with regards to the optimal performance of developed composite remains a challenge. This research aimed to determine the optimal mixture of Al50Cu10Sn5Mg20Zn10Ti5 lightweight high-entropy alloy (LHEA), B4C, and ZrO2 for the fabrication of trihybrid titanium composites via direct laser deposition. A mixture design was involved in the experimental design, and experimental data were modeled and optimized to achieve the optimal performance of the trihybrid composite. The ANOVA, response surface plots, and ternary maps analyses of the experimental results revealed that various combinations of reinforcement particles displayed a variety of response trends. Moreover, the analysis showed that these reinforcements significantly contributed to the magnitudes and trends of the responses. The generated models were competent for predicting response, and the best formulation consisted of 8.4% LHEA, 1.2% B4C, and 2.4% ZrO2.\",\"PeriodicalId\":53224,\"journal\":{\"name\":\"Mathematical & Computational Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical & Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca28020054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28020054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Applicability of Extreme Vertices Design in the Compositional Optimization of 3D-Printed Lightweight High-Entropy-Alloy/B4C/ZrO2/Titanium Trihybrid Aero-Composite
Recent studies have shown the benefits of utilizing ceramic particles as reinforcement in metal alloys; nevertheless, certain drawbacks, including loss of ductility, embrittlement, and decreases in toughness, have been noted. For the objective of obtaining balanced performance, experts have suggested the addition of metal particles as supplement to the ceramic reinforcement. Consequently, high-performance metal hybrid composites have been developed. However, achieving the optimal mix for the reinforcement combination with regards to the optimal performance of developed composite remains a challenge. This research aimed to determine the optimal mixture of Al50Cu10Sn5Mg20Zn10Ti5 lightweight high-entropy alloy (LHEA), B4C, and ZrO2 for the fabrication of trihybrid titanium composites via direct laser deposition. A mixture design was involved in the experimental design, and experimental data were modeled and optimized to achieve the optimal performance of the trihybrid composite. The ANOVA, response surface plots, and ternary maps analyses of the experimental results revealed that various combinations of reinforcement particles displayed a variety of response trends. Moreover, the analysis showed that these reinforcements significantly contributed to the magnitudes and trends of the responses. The generated models were competent for predicting response, and the best formulation consisted of 8.4% LHEA, 1.2% B4C, and 2.4% ZrO2.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.