{"title":"无限拉普拉斯算子的Gelfand问题","authors":"Fernando Charro, B. Son, Peiyong Wang","doi":"10.3934/mine.2023022","DOIUrl":null,"url":null,"abstract":"<abstract><p>We study the asymptotic behavior as $ p\\to\\infty $ of the Gelfand problem</p>\n\n<p><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{equation*} \\left\\{ \\begin{aligned} -&\\Delta_{p} u = \\lambda\\,e^{u}&& \\text{in}\\ \\Omega\\subset \\mathbb{R}^n\\\\ &u = 0 && \\text{on}\\ \\partial\\Omega. \\end{aligned} \\right. \\end{equation*} $\\end{document} </tex-math></disp-formula></p>\n\n<p>Under an appropriate rescaling on $ u $ and $ \\lambda $, we prove uniform convergence of solutions of the Gelfand problem to solutions of</p>\n\n<p><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ \\left\\{ \\begin{aligned} &\\min\\left\\{|\\nabla{}u|-\\Lambda\\,e^{u}, -\\Delta_{\\infty}u\\right\\} = 0&& \\text{in}\\ \\Omega,\\\\ &u = 0\\ &&\\text{on}\\ \\partial\\Omega. \\end{aligned} \\right. $\\end{document} </tex-math></disp-formula></p>\n\n<p>We discuss existence, non-existence, and multiplicity of solutions of the limit problem in terms of $ \\Lambda $.</p></abstract>","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Gelfand problem for the Infinity Laplacian\",\"authors\":\"Fernando Charro, B. Son, Peiyong Wang\",\"doi\":\"10.3934/mine.2023022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>We study the asymptotic behavior as $ p\\\\to\\\\infty $ of the Gelfand problem</p>\\n\\n<p><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{equation*} \\\\left\\\\{ \\\\begin{aligned} -&\\\\Delta_{p} u = \\\\lambda\\\\,e^{u}&& \\\\text{in}\\\\ \\\\Omega\\\\subset \\\\mathbb{R}^n\\\\\\\\ &u = 0 && \\\\text{on}\\\\ \\\\partial\\\\Omega. \\\\end{aligned} \\\\right. \\\\end{equation*} $\\\\end{document} </tex-math></disp-formula></p>\\n\\n<p>Under an appropriate rescaling on $ u $ and $ \\\\lambda $, we prove uniform convergence of solutions of the Gelfand problem to solutions of</p>\\n\\n<p><disp-formula> <label/> <tex-math id=\\\"FE2\\\"> \\\\begin{document}$ \\\\left\\\\{ \\\\begin{aligned} &\\\\min\\\\left\\\\{|\\\\nabla{}u|-\\\\Lambda\\\\,e^{u}, -\\\\Delta_{\\\\infty}u\\\\right\\\\} = 0&& \\\\text{in}\\\\ \\\\Omega,\\\\\\\\ &u = 0\\\\ &&\\\\text{on}\\\\ \\\\partial\\\\Omega. \\\\end{aligned} \\\\right. $\\\\end{document} </tex-math></disp-formula></p>\\n\\n<p>We discuss existence, non-existence, and multiplicity of solutions of the limit problem in terms of $ \\\\Lambda $.</p></abstract>\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023022\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}