小麦超氧化物歧化酶基因TaSOD5的异位表达增强了拟南芥对盐和氧化胁迫的耐受性

IF 0.8 4区 生物学 Q4 PLANT SCIENCES
Yongping Wang, Qiang Liu, Yang Liu, G. Li, G. Xia, M. Wang
{"title":"小麦超氧化物歧化酶基因TaSOD5的异位表达增强了拟南芥对盐和氧化胁迫的耐受性","authors":"Yongping Wang, Qiang Liu, Yang Liu, G. Li, G. Xia, M. Wang","doi":"10.32615/BP.2020.147","DOIUrl":null,"url":null,"abstract":"Superoxide dismutase (SOD) is a crucial reactive oxygen species (ROS) scavenger, which converts superoxide radical to H2O2, so it is thought to enhance abiotic stress tolerance by reducing ROS and thus avoiding oxidative damage. In this study, we isolated a salt- and oxidative stress-responsive copper-zinc (Cu/Zn) SOD encoding gene TaSOD5 from wheat. The ectopic overexpression of TaSOD5 in Arabidopsis thaliana increased total SOD and Cu/Zn SOD activities and enhanced tolerance to salt stress. Arabidopsis ectopically expressing TaSOD5 possessed a superior resistance to oxidative stress stimulated by exogenous H2O2. Ectopic overexpression of TaSOD5 elevated the activities of both ROS scavengers and an O2.- producer - NADPH oxidase. These findings show that Cu/Zn SOD enhanced salt tolerance via regulating the machinery of redox homeostasis rather than improving SOD activity alone.","PeriodicalId":8912,"journal":{"name":"Biologia Plantarum","volume":"65 1","pages":"19-26"},"PeriodicalIF":0.8000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Ectopic expression of a wheat superoxide dismutase gene TaSOD5 enhances salt and oxidative stress tolerance in Arabidopsis\",\"authors\":\"Yongping Wang, Qiang Liu, Yang Liu, G. Li, G. Xia, M. Wang\",\"doi\":\"10.32615/BP.2020.147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superoxide dismutase (SOD) is a crucial reactive oxygen species (ROS) scavenger, which converts superoxide radical to H2O2, so it is thought to enhance abiotic stress tolerance by reducing ROS and thus avoiding oxidative damage. In this study, we isolated a salt- and oxidative stress-responsive copper-zinc (Cu/Zn) SOD encoding gene TaSOD5 from wheat. The ectopic overexpression of TaSOD5 in Arabidopsis thaliana increased total SOD and Cu/Zn SOD activities and enhanced tolerance to salt stress. Arabidopsis ectopically expressing TaSOD5 possessed a superior resistance to oxidative stress stimulated by exogenous H2O2. Ectopic overexpression of TaSOD5 elevated the activities of both ROS scavengers and an O2.- producer - NADPH oxidase. These findings show that Cu/Zn SOD enhanced salt tolerance via regulating the machinery of redox homeostasis rather than improving SOD activity alone.\",\"PeriodicalId\":8912,\"journal\":{\"name\":\"Biologia Plantarum\",\"volume\":\"65 1\",\"pages\":\"19-26\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/BP.2020.147\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia Plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/BP.2020.147","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 6

摘要

超氧化物歧化酶(SOD)是一种重要的活性氧(ROS)清除剂,它将超氧化物自由基转化为H2O2,因此被认为可以通过减少ROS来增强非生物胁迫耐受性,从而避免氧化损伤。在本研究中,我们从小麦中分离出一个盐和氧化应激反应性铜锌(Cu/Zn)SOD编码基因TaSOD5。TaSOD5在拟南芥中的异位过表达增加了总SOD和Cu/Zn SOD活性,并增强了对盐胁迫的耐受性。外源表达TaSOD5的拟南芥对外源H2O2刺激的氧化应激具有优异的抗性。TaSOD5的异位过表达提高了ROS清除剂和O2-产生者-NADPH氧化酶的活性。这些发现表明,Cu/Zn-SOD通过调节氧化还原稳态机制而不是单独提高SOD活性来增强耐盐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ectopic expression of a wheat superoxide dismutase gene TaSOD5 enhances salt and oxidative stress tolerance in Arabidopsis
Superoxide dismutase (SOD) is a crucial reactive oxygen species (ROS) scavenger, which converts superoxide radical to H2O2, so it is thought to enhance abiotic stress tolerance by reducing ROS and thus avoiding oxidative damage. In this study, we isolated a salt- and oxidative stress-responsive copper-zinc (Cu/Zn) SOD encoding gene TaSOD5 from wheat. The ectopic overexpression of TaSOD5 in Arabidopsis thaliana increased total SOD and Cu/Zn SOD activities and enhanced tolerance to salt stress. Arabidopsis ectopically expressing TaSOD5 possessed a superior resistance to oxidative stress stimulated by exogenous H2O2. Ectopic overexpression of TaSOD5 elevated the activities of both ROS scavengers and an O2.- producer - NADPH oxidase. These findings show that Cu/Zn SOD enhanced salt tolerance via regulating the machinery of redox homeostasis rather than improving SOD activity alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biologia Plantarum
Biologia Plantarum 生物-植物科学
CiteScore
2.80
自引率
0.00%
发文量
28
审稿时长
3.3 months
期刊介绍: BIOLOGIA PLANTARUM is an international journal for experimental botany. It publishes original scientific papers and brief communications, reviews on specialized topics, and book reviews in plant physiology, plant biochemistry and biophysics, physiological anatomy, ecophysiology, genetics, molecular biology, cell biology, evolution, and pathophysiology. All papers should contribute substantially to the current level of plant science and combine originality with a potential general interest. The journal focuses on model and crop plants, as well as on under-investigated species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信