M. Santhi, T. Chinnappalanaidu, S. S. Madhu, Daba Meshesha Gusu
{"title":"Brans-Dicke理论中的一些Bianchi型粘性全息暗能量宇宙学模型","authors":"M. Santhi, T. Chinnappalanaidu, S. S. Madhu, Daba Meshesha Gusu","doi":"10.1155/2022/5364541","DOIUrl":null,"url":null,"abstract":"<jats:p>In this article, we analyze Bianchi type–II, VIII, and IX spatially homogeneous and anisotropic space-times in the background of the Brans–Dicke theory of gravity within the framework of viscous holographic dark energy. To solve the field equations, we have used the relation between the metric potentials as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>R</mi>\n <mo>=</mo>\n <msup>\n <mrow>\n <mi>S</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula> and the relation between the scalar field <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>ϕ</mi>\n </math>\n </jats:inline-formula> and the scale factor <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>a</mi>\n </math>\n </jats:inline-formula> as <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>ϕ</mi>\n <mo>=</mo>\n <msup>\n <mrow>\n <mi>a</mi>\n </mrow>\n <mrow>\n <mi>m</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>. Also, we have discussed some of the dynamical parameters of the obtained models, such as the deceleration parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>q</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, the jerk parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mo> </mo>\n <mi>j</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, the EoS parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>ω</mi>\n </mrow>\n <mrow>\n <mi>v</mi>\n <mi>h</mi>\n <mi>d</mi>\n <mi>e</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, the density parameter <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <mrow>\n <mtext>vhde</mtext>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, Om-diagnostic, squared speed of sound <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msubsup>\n <mi>v</mi>\n <mi>s</mi>\n <mn>2</mn>\n </msubsup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, EoS plane <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>ω</mi>\n </mrow>\n <mrow>\n <mi>v</mi>\n <mi>h</mi>\n <mi>d</mi>\n <mi>e</mi>\n </mrow>\n </msub>\n <mo>−</mo>\n <msubsup>\n <mi>ω</mi>\n <mrow>\n <mi>v</mi>\n <mi>h</mi>\n <mi>d</mi>\n <mi>e</mi>\n </mrow>\n <mo>′</mo>\n </msubsup>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, and statefinder plane <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M11\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>r</mi>\n <mo> </mo>\n <mo>−</mo>\n <mo> </mo>\n <mi>s</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> through graphical representation, which are significant in the discussion of cosmology. Furthermore, all the models obtained and graphically presented shown an expanding and accelerating Universe, which is in better agreement with the latest experimental data. The viscous holographic dark energy models are compatible with explaining the present cosmic accelerated expansion.</jats:p>","PeriodicalId":48962,"journal":{"name":"Advances in Astronomy","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Some Bianchi Type Viscous Holographic Dark Energy Cosmological Models in the Brans–Dicke Theory\",\"authors\":\"M. Santhi, T. Chinnappalanaidu, S. S. Madhu, Daba Meshesha Gusu\",\"doi\":\"10.1155/2022/5364541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this article, we analyze Bianchi type–II, VIII, and IX spatially homogeneous and anisotropic space-times in the background of the Brans–Dicke theory of gravity within the framework of viscous holographic dark energy. To solve the field equations, we have used the relation between the metric potentials as <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>R</mi>\\n <mo>=</mo>\\n <msup>\\n <mrow>\\n <mi>S</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula> and the relation between the scalar field <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>ϕ</mi>\\n </math>\\n </jats:inline-formula> and the scale factor <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>a</mi>\\n </math>\\n </jats:inline-formula> as <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>ϕ</mi>\\n <mo>=</mo>\\n <msup>\\n <mrow>\\n <mi>a</mi>\\n </mrow>\\n <mrow>\\n <mi>m</mi>\\n </mrow>\\n </msup>\\n </math>\\n </jats:inline-formula>. Also, we have discussed some of the dynamical parameters of the obtained models, such as the deceleration parameter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, the jerk parameter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mo> </mo>\\n <mi>j</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, the EoS parameter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ω</mi>\\n </mrow>\\n <mrow>\\n <mi>v</mi>\\n <mi>h</mi>\\n <mi>d</mi>\\n <mi>e</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, the density parameter <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>Ω</mi>\\n </mrow>\\n <mrow>\\n <mtext>vhde</mtext>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, Om-diagnostic, squared speed of sound <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msubsup>\\n <mi>v</mi>\\n <mi>s</mi>\\n <mn>2</mn>\\n </msubsup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, EoS plane <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>ω</mi>\\n </mrow>\\n <mrow>\\n <mi>v</mi>\\n <mi>h</mi>\\n <mi>d</mi>\\n <mi>e</mi>\\n </mrow>\\n </msub>\\n <mo>−</mo>\\n <msubsup>\\n <mi>ω</mi>\\n <mrow>\\n <mi>v</mi>\\n <mi>h</mi>\\n <mi>d</mi>\\n <mi>e</mi>\\n </mrow>\\n <mo>′</mo>\\n </msubsup>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, and statefinder plane <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M11\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>r</mi>\\n <mo> </mo>\\n <mo>−</mo>\\n <mo> </mo>\\n <mi>s</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> through graphical representation, which are significant in the discussion of cosmology. Furthermore, all the models obtained and graphically presented shown an expanding and accelerating Universe, which is in better agreement with the latest experimental data. The viscous holographic dark energy models are compatible with explaining the present cosmic accelerated expansion.</jats:p>\",\"PeriodicalId\":48962,\"journal\":{\"name\":\"Advances in Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5364541\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/5364541","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 1
摘要
本文在粘性全息暗能量的框架下,以Brans-Dicke引力理论为背景,分析了Bianchi型ii、VIII和IX型空间均质和各向异性时空。为了解场方程,我们使用了度量势之间的关系R = S n和标量场φ之间的关系比例因子a是φ = m。此外,我们还讨论了得到的模型的一些动力学参数,如减速参数q,抖动参数j,EoS参数ω v h d e,密度参数Ω vhde, Om-diagnostic,声速的平方v s 2,EoS平面ω v h d e−ω v h d e ',以及通过图形表示的寻态平面r - s,这在宇宙学的讨论中具有重要意义。此外,所有获得的模型和图形都显示了一个膨胀和加速的宇宙,这与最新的实验数据更吻合。粘性全息暗能量模型与解释当前的宇宙加速膨胀是相容的。
Some Bianchi Type Viscous Holographic Dark Energy Cosmological Models in the Brans–Dicke Theory
In this article, we analyze Bianchi type–II, VIII, and IX spatially homogeneous and anisotropic space-times in the background of the Brans–Dicke theory of gravity within the framework of viscous holographic dark energy. To solve the field equations, we have used the relation between the metric potentials as and the relation between the scalar field and the scale factor as . Also, we have discussed some of the dynamical parameters of the obtained models, such as the deceleration parameter , the jerk parameter , the EoS parameter , the density parameter , Om-diagnostic, squared speed of sound , EoS plane , and statefinder plane through graphical representation, which are significant in the discussion of cosmology. Furthermore, all the models obtained and graphically presented shown an expanding and accelerating Universe, which is in better agreement with the latest experimental data. The viscous holographic dark energy models are compatible with explaining the present cosmic accelerated expansion.
期刊介绍:
Advances in Astronomy publishes articles in all areas of astronomy, astrophysics, and cosmology. The journal accepts both observational and theoretical investigations into celestial objects and the wider universe, as well as the reports of new methods and instrumentation for their study.