{"title":"运动族的有理倒钩曲线","authors":"R. Mukherjee, R. Singh","doi":"10.1515/coma-2020-0110","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we obtain a formula for the number of rational degree d curves in ℙ3 having a cusp, whose image lies in a ℙ2 and that passes through r lines and s points (where r + 2s = 3d + 1). This problem can be viewed as a family version of the classical question of counting rational cuspidal curves in ℙ2, which has been studied earlier by Z. Ran ([13]), R. Pandharipande ([12]) and A. Zinger ([16]). We obtain this number by computing the Euler class of a relevant bundle and then finding out the corresponding degenerate contribution to the Euler class. The method we use is closely based on the method followed by A. Zinger ([16]) and I. Biswas, S. D’Mello, R. Mukherjee and V. Pingali ([1]). We also verify that our answer for the characteristic numbers of rational cuspidal planar cubics and quartics is consistent with the answer obtained by N. Das and the first author ([2]), where they compute the characteristic number of δ-nodal planar curves in ℙ3 with one cusp (for δ ≤ 2).","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"8 1","pages":"125 - 137"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2020-0110","citationCount":"3","resultStr":"{\"title\":\"Rational cuspidal curves in a moving family of ℙ2\",\"authors\":\"R. Mukherjee, R. Singh\",\"doi\":\"10.1515/coma-2020-0110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper we obtain a formula for the number of rational degree d curves in ℙ3 having a cusp, whose image lies in a ℙ2 and that passes through r lines and s points (where r + 2s = 3d + 1). This problem can be viewed as a family version of the classical question of counting rational cuspidal curves in ℙ2, which has been studied earlier by Z. Ran ([13]), R. Pandharipande ([12]) and A. Zinger ([16]). We obtain this number by computing the Euler class of a relevant bundle and then finding out the corresponding degenerate contribution to the Euler class. The method we use is closely based on the method followed by A. Zinger ([16]) and I. Biswas, S. D’Mello, R. Mukherjee and V. Pingali ([1]). We also verify that our answer for the characteristic numbers of rational cuspidal planar cubics and quartics is consistent with the answer obtained by N. Das and the first author ([2]), where they compute the characteristic number of δ-nodal planar curves in ℙ3 with one cusp (for δ ≤ 2).\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"8 1\",\"pages\":\"125 - 137\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/coma-2020-0110\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2020-0110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2020-0110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
摘要本文给出了一个具有顶点的有理次d曲线的个数公式,该曲线的象位于一个经过r条线和s个点的(其中r + 2s = 3d + 1)。这个问题可以看作是先前由Z. Ran([13])、r . Pandharipande([12])和a . Zinger([16])研究的经典的关于计算有理次d曲线的问题的族版本。我们通过计算相关束的欧拉类,然后找出相应的简并对欧拉类的贡献来得到这个数。我们使用的方法与A. Zinger([1])和I. Biswas、S. D 'Mello、R. Mukherjee和V. Pingali([1])所采用的方法密切相关。我们还验证了有理尖形平面三次和四分之一的特征数的答案与N. Das和第一作者([2])得到的答案是一致的,他们计算了一个尖形(δ≤2)的δ-节点平面曲线的特征数。
Abstract In this paper we obtain a formula for the number of rational degree d curves in ℙ3 having a cusp, whose image lies in a ℙ2 and that passes through r lines and s points (where r + 2s = 3d + 1). This problem can be viewed as a family version of the classical question of counting rational cuspidal curves in ℙ2, which has been studied earlier by Z. Ran ([13]), R. Pandharipande ([12]) and A. Zinger ([16]). We obtain this number by computing the Euler class of a relevant bundle and then finding out the corresponding degenerate contribution to the Euler class. The method we use is closely based on the method followed by A. Zinger ([16]) and I. Biswas, S. D’Mello, R. Mukherjee and V. Pingali ([1]). We also verify that our answer for the characteristic numbers of rational cuspidal planar cubics and quartics is consistent with the answer obtained by N. Das and the first author ([2]), where they compute the characteristic number of δ-nodal planar curves in ℙ3 with one cusp (for δ ≤ 2).
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.