Banach空间上的群不变分离多项式

IF 0.8 3区 数学 Q2 MATHEMATICS
J. Falcó, Domingo García, Mingu Jung, M. Maestre
{"title":"Banach空间上的群不变分离多项式","authors":"J. Falcó, Domingo García, Mingu Jung, M. Maestre","doi":"10.5565/publmat6612209","DOIUrl":null,"url":null,"abstract":"We study the group invariant continuous polynomials on a Banach space $X$ that separate a given set $K$ in $X$ and a point $z$ outside $K$. We show that if $X$ is a real Banach space, $G$ is a compact group of $\\mathcal{L} (X)$, $K$ is a $G$-invariant set in $X$, and $z$ is a point outside $K$ that can be separated from $K$ by a continuous polynomial $Q$, then $z$ can also be separated from $K$ by a $G$-invariant continuous polynomial $P$. It turns out that this result does not hold when $X$ is a complex Banach space, so we present some additional conditions to get analogous results for the complex case. We also obtain separation theorems under the assumption that $X$ has a Schauder basis which give applications to several classical groups. In this case, we obtain characterizations of points which can be separated by a group invariant polynomial from the closed unit ball.","PeriodicalId":54531,"journal":{"name":"Publicacions Matematiques","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Group invariant separating polynomials on a Banach space\",\"authors\":\"J. Falcó, Domingo García, Mingu Jung, M. Maestre\",\"doi\":\"10.5565/publmat6612209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the group invariant continuous polynomials on a Banach space $X$ that separate a given set $K$ in $X$ and a point $z$ outside $K$. We show that if $X$ is a real Banach space, $G$ is a compact group of $\\\\mathcal{L} (X)$, $K$ is a $G$-invariant set in $X$, and $z$ is a point outside $K$ that can be separated from $K$ by a continuous polynomial $Q$, then $z$ can also be separated from $K$ by a $G$-invariant continuous polynomial $P$. It turns out that this result does not hold when $X$ is a complex Banach space, so we present some additional conditions to get analogous results for the complex case. We also obtain separation theorems under the assumption that $X$ has a Schauder basis which give applications to several classical groups. In this case, we obtain characterizations of points which can be separated by a group invariant polynomial from the closed unit ball.\",\"PeriodicalId\":54531,\"journal\":{\"name\":\"Publicacions Matematiques\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publicacions Matematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5565/publmat6612209\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicacions Matematiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6612209","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

我们研究Banach空间$X$上的群不变连续多项式,它分离了$X$中的给定集合$K$和$K$外的点$z$。我们证明了如果$X$是实Banach空间,$G$是$\mathcal{L}(X)$的紧群,$K$是$X$中的$G$不变集,$z$是$K$外的一个点,它可以通过连续多项式$Q$与$K$分离,那么$z$也可以通过$G$不变量连续多项式$P$与$K$分离。结果表明,当$X$是一个复Banach空间时,这个结果是不成立的,因此我们提出了一些附加条件来获得复杂情况下的类似结果。在$X$具有Schauder基的假设下,我们还得到了分离定理,该定理适用于几个经典群。在这种情况下,我们得到了可以用群不变多项式从闭单位球中分离的点的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group invariant separating polynomials on a Banach space
We study the group invariant continuous polynomials on a Banach space $X$ that separate a given set $K$ in $X$ and a point $z$ outside $K$. We show that if $X$ is a real Banach space, $G$ is a compact group of $\mathcal{L} (X)$, $K$ is a $G$-invariant set in $X$, and $z$ is a point outside $K$ that can be separated from $K$ by a continuous polynomial $Q$, then $z$ can also be separated from $K$ by a $G$-invariant continuous polynomial $P$. It turns out that this result does not hold when $X$ is a complex Banach space, so we present some additional conditions to get analogous results for the complex case. We also obtain separation theorems under the assumption that $X$ has a Schauder basis which give applications to several classical groups. In this case, we obtain characterizations of points which can be separated by a group invariant polynomial from the closed unit ball.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Publicacions Matemàtiques is a research mathematical journal published by the Department of Mathematics of the Universitat Autònoma de Barcelona since 1976 (before 1988 named Publicacions de la Secció de Matemàtiques, ISSN: 0210-2978 print, 2014-4369 online). Two issues, constituting a single volume, are published each year. The journal has a large circulation being received by more than two hundred libraries all over the world. It is indexed by Mathematical Reviews, Zentralblatt Math., Science Citation Index, SciSearch®, ISI Alerting Services, COMPUMATH Citation Index®, and it participates in the Euclid Project and JSTOR. Free access is provided to all published papers through the web page. Publicacions Matemàtiques is a non-profit university journal which gives special attention to the authors during the whole editorial process. In 2019, the average time between the reception of a paper and its publication was twenty-two months, and the average time between the acceptance of a paper and its publication was fifteen months. The journal keeps on receiving a large number of submissions, so the authors should be warned that currently only articles with excellent reports can be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信