全Navier-Stokes方程的拓扑渐近展开

IF 1.1 4区 数学 Q2 MATHEMATICS, APPLIED
M. Hassine, Sana Chaouch
{"title":"全Navier-Stokes方程的拓扑渐近展开","authors":"M. Hassine, Sana Chaouch","doi":"10.3233/asy-221807","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a topological sensitivity analysis for the two dimensional incompressible Navier–Stokes equations. We derive a topological asymptotic expansion for a shape functional with respect to the creation of a small geometric perturbation inside the fluid flow domain. The geometric perturbation is modeled as a small obstacle. The asymptotic behavior of the perturbed velocity field with respect to the obstacle size is discussed. The obtained results are valid for a large class of shape fonctions and arbitrarily shaped geometric perturbations. The established topological asymptotic expansion provides a useful tool for shape and topology optimization in fluid mechanics.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological asymptotic expansion for the full Navier–Stokes equations\",\"authors\":\"M. Hassine, Sana Chaouch\",\"doi\":\"10.3233/asy-221807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with a topological sensitivity analysis for the two dimensional incompressible Navier–Stokes equations. We derive a topological asymptotic expansion for a shape functional with respect to the creation of a small geometric perturbation inside the fluid flow domain. The geometric perturbation is modeled as a small obstacle. The asymptotic behavior of the perturbed velocity field with respect to the obstacle size is discussed. The obtained results are valid for a large class of shape fonctions and arbitrarily shaped geometric perturbations. The established topological asymptotic expansion provides a useful tool for shape and topology optimization in fluid mechanics.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-221807\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-221807","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了二维不可压缩Navier-Stokes方程的拓扑灵敏度分析。我们导出了形状泛函关于在流体流动域内产生小几何扰动的拓扑渐近展开式。几何扰动被建模为一个小障碍物。讨论了扰动速度场相对于障碍物大小的渐近行为。所得结果对一大类形状函数和任意形状的几何扰动都是有效的。所建立的拓扑渐近展开为流体力学中的形状和拓扑优化提供了一个有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological asymptotic expansion for the full Navier–Stokes equations
This paper is concerned with a topological sensitivity analysis for the two dimensional incompressible Navier–Stokes equations. We derive a topological asymptotic expansion for a shape functional with respect to the creation of a small geometric perturbation inside the fluid flow domain. The geometric perturbation is modeled as a small obstacle. The asymptotic behavior of the perturbed velocity field with respect to the obstacle size is discussed. The obtained results are valid for a large class of shape fonctions and arbitrarily shaped geometric perturbations. The established topological asymptotic expansion provides a useful tool for shape and topology optimization in fluid mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asymptotic Analysis
Asymptotic Analysis 数学-应用数学
CiteScore
1.90
自引率
7.10%
发文量
91
审稿时长
6 months
期刊介绍: The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信