FAIR数据共享:医学研究人员为何落后的国际视角

IF 6.5 1区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY
L. Rainey, J. Lutomski, M. Broeders
{"title":"FAIR数据共享:医学研究人员为何落后的国际视角","authors":"L. Rainey, J. Lutomski, M. Broeders","doi":"10.1177/20539517231171052","DOIUrl":null,"url":null,"abstract":"FAIR data, that is, Findable, Accessible, Interoperable, and Reusable data, and Big Data intersect across issues related to data storage, access, and processing. The solution-oriented FAIR principles serve an integral role in improving Big Data; yet to date, the implementation of FAIR in multiple sectors has been fragmented. We conducted an exploratory analysis to identify incentives and barriers in creating FAIR data in the medical sector using digital concept mapping, a systematic mixed methods approach. Thirty-eight principal investigators (PIs) were recruited from North America, Europe, and Oceania. Our analysis revealed five clusters rated according to perceived relevance: ‘Efficiency and collaboration’ (rating 7.23), ‘Privacy and security’ (rating 7.18), ‘Data management standards’ (rating 7.16), ‘Organization of services’ (rating 6.98), and ‘Ownership’ (rating 6.28). All five clusters scored relatively high and within a narrow range (i.e., 6.28–7.69), implying that each cluster likely influences researchers’ decision-making processes. PIs harbor a positive view of FAIR data sharing, as exemplified by participants highly prioritizing ‘Efficiency and collaboration’. However, the other four clusters received only modestly lower ratings and largely contained barriers to FAIR data sharing. When viewed collectively, the benefits of efficiency and collaboration may not be sufficient in propelling FAIR data sharing. Arguably, until more of these reported barriers are addressed, widespread support of FAIR data will not translate into widespread practice. This research lays the preliminary foundation for conducting targeted large-scale research into FAIR data practices in the medical research community.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FAIR data sharing: An international perspective on why medical researchers are lagging behind\",\"authors\":\"L. Rainey, J. Lutomski, M. Broeders\",\"doi\":\"10.1177/20539517231171052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FAIR data, that is, Findable, Accessible, Interoperable, and Reusable data, and Big Data intersect across issues related to data storage, access, and processing. The solution-oriented FAIR principles serve an integral role in improving Big Data; yet to date, the implementation of FAIR in multiple sectors has been fragmented. We conducted an exploratory analysis to identify incentives and barriers in creating FAIR data in the medical sector using digital concept mapping, a systematic mixed methods approach. Thirty-eight principal investigators (PIs) were recruited from North America, Europe, and Oceania. Our analysis revealed five clusters rated according to perceived relevance: ‘Efficiency and collaboration’ (rating 7.23), ‘Privacy and security’ (rating 7.18), ‘Data management standards’ (rating 7.16), ‘Organization of services’ (rating 6.98), and ‘Ownership’ (rating 6.28). All five clusters scored relatively high and within a narrow range (i.e., 6.28–7.69), implying that each cluster likely influences researchers’ decision-making processes. PIs harbor a positive view of FAIR data sharing, as exemplified by participants highly prioritizing ‘Efficiency and collaboration’. However, the other four clusters received only modestly lower ratings and largely contained barriers to FAIR data sharing. When viewed collectively, the benefits of efficiency and collaboration may not be sufficient in propelling FAIR data sharing. Arguably, until more of these reported barriers are addressed, widespread support of FAIR data will not translate into widespread practice. This research lays the preliminary foundation for conducting targeted large-scale research into FAIR data practices in the medical research community.\",\"PeriodicalId\":47834,\"journal\":{\"name\":\"Big Data & Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data & Society\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/20539517231171052\",\"RegionNum\":1,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517231171052","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

FAIR数据,即可查找、可访问、可互操作和可重复使用的数据,以及大数据在与数据存储、访问和处理相关的问题上交叉。面向解决方案的FAIR原则在改进大数据方面发挥着不可或缺的作用;迄今为止,FAIR在多个部门的实施是分散的。我们进行了一项探索性分析,以确定使用数字概念图(一种系统的混合方法)创建医疗部门FAIR数据的动机和障碍。从北美、欧洲和大洋洲招募了38名主要研究人员。我们的分析揭示了五个根据感知相关性进行评级的集群:“效率和协作”(评级7.23)、“隐私和安全”(评级7.18)、“数据管理标准”(评级71.6)、“服务组织”(评级6.98)和“所有权”(评级6.28)。所有五个集群的得分都相对较高,且在较窄的范围内(即6.28-7.69),这意味着每个聚类都可能影响研究人员的决策过程。PI对FAIR数据共享持积极态度,参与者高度重视“效率和协作”就是一个例证。然而,其他四个集群的评级仅略低,并且在很大程度上包含了FAIR数据共享的障碍。从整体来看,效率和协作的好处可能不足以推动FAIR数据共享。可以说,在解决更多这些报告的障碍之前,对FAIR数据的广泛支持不会转化为广泛的实践。这项研究为在医学研究界对FAIR数据实践进行有针对性的大规模研究奠定了初步基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FAIR data sharing: An international perspective on why medical researchers are lagging behind
FAIR data, that is, Findable, Accessible, Interoperable, and Reusable data, and Big Data intersect across issues related to data storage, access, and processing. The solution-oriented FAIR principles serve an integral role in improving Big Data; yet to date, the implementation of FAIR in multiple sectors has been fragmented. We conducted an exploratory analysis to identify incentives and barriers in creating FAIR data in the medical sector using digital concept mapping, a systematic mixed methods approach. Thirty-eight principal investigators (PIs) were recruited from North America, Europe, and Oceania. Our analysis revealed five clusters rated according to perceived relevance: ‘Efficiency and collaboration’ (rating 7.23), ‘Privacy and security’ (rating 7.18), ‘Data management standards’ (rating 7.16), ‘Organization of services’ (rating 6.98), and ‘Ownership’ (rating 6.28). All five clusters scored relatively high and within a narrow range (i.e., 6.28–7.69), implying that each cluster likely influences researchers’ decision-making processes. PIs harbor a positive view of FAIR data sharing, as exemplified by participants highly prioritizing ‘Efficiency and collaboration’. However, the other four clusters received only modestly lower ratings and largely contained barriers to FAIR data sharing. When viewed collectively, the benefits of efficiency and collaboration may not be sufficient in propelling FAIR data sharing. Arguably, until more of these reported barriers are addressed, widespread support of FAIR data will not translate into widespread practice. This research lays the preliminary foundation for conducting targeted large-scale research into FAIR data practices in the medical research community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data & Society
Big Data & Society SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
10.90
自引率
10.60%
发文量
59
审稿时长
11 weeks
期刊介绍: Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government. BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices. BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信