时钟基因在两种鼠肾脏中的表达模式

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Hongjie Song, Yuyang Cheng, Linchao Fan, Hong Sun
{"title":"时钟基因在两种鼠肾脏中的表达模式","authors":"Hongjie Song, Yuyang Cheng, Linchao Fan, Hong Sun","doi":"10.1163/15707563-bja10067","DOIUrl":null,"url":null,"abstract":"\nPrevious studies showed that the kidney has its own molecular circadian clock expression regulation that maintains the homeostasis of physiological processes. However, limited information is available on the molecular mechanisms of the kidney circadian rhythm in subterranean rodents. Here, we report circadian gene expression in the kidney of subterranean Mandarin voles and the related aboveground Brandt’s voles, reared under 12L:12D (LD) or dark (DD) conditions, respectively. The results showed that the rhythmic genes were represented in Brandt’s voles in higher numbers under LD than DD conditions, but the number of rhythmic genes in Mandarin voles was similar between the two treatment conditions. The gene expression levels at different timepoints all showed reduced results under DD conditions compared with those in the LD cycle in Brandt’s voles, whereas the expression levels of the tested genes at certain Zeitgeber timepoints showed higher results than in the LD cycle in Mandarin voles. The gene expression peak showed chaotic resetting under DD conditions in both voles. We thus suggest that Mandarin and Brandt’s voles have different molecular circadian clock expression adjustment patterns in the kidney as an adaptation to different living environments. Mandarin voles seem to be more adapted to the dark environment, while Brandt’s voles are more dependent on external light conditions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expression patterns of clock genes in the kidney of two Lasiopodomys species\",\"authors\":\"Hongjie Song, Yuyang Cheng, Linchao Fan, Hong Sun\",\"doi\":\"10.1163/15707563-bja10067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPrevious studies showed that the kidney has its own molecular circadian clock expression regulation that maintains the homeostasis of physiological processes. However, limited information is available on the molecular mechanisms of the kidney circadian rhythm in subterranean rodents. Here, we report circadian gene expression in the kidney of subterranean Mandarin voles and the related aboveground Brandt’s voles, reared under 12L:12D (LD) or dark (DD) conditions, respectively. The results showed that the rhythmic genes were represented in Brandt’s voles in higher numbers under LD than DD conditions, but the number of rhythmic genes in Mandarin voles was similar between the two treatment conditions. The gene expression levels at different timepoints all showed reduced results under DD conditions compared with those in the LD cycle in Brandt’s voles, whereas the expression levels of the tested genes at certain Zeitgeber timepoints showed higher results than in the LD cycle in Mandarin voles. The gene expression peak showed chaotic resetting under DD conditions in both voles. We thus suggest that Mandarin and Brandt’s voles have different molecular circadian clock expression adjustment patterns in the kidney as an adaptation to different living environments. Mandarin voles seem to be more adapted to the dark environment, while Brandt’s voles are more dependent on external light conditions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1163/15707563-bja10067\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1163/15707563-bja10067","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

先前的研究表明,肾脏有自己的分子昼夜节律时钟表达调节,可以维持生理过程的稳态。然而,关于地下啮齿动物肾脏昼夜节律的分子机制的信息有限。在此,我们报道了分别在12L:12D(LD)或黑暗(DD)条件下饲养的地下华田鼠和相关地上勃兰特田鼠肾脏中的昼夜节律基因表达。结果表明,在LD条件下,节律基因在Brandt田鼠中的表达数量高于DD条件下,但在两种处理条件下,中国田鼠的节律基因数量相似。不同时间点的基因表达水平在DD条件下均显示出与Brandt’s田鼠LD周期中的结果相比有所降低,而在某些Zeitgeber时间点的测试基因表达水平显示出高于普通话田鼠LD周期的结果。在DD条件下,两种田鼠的基因表达峰值都显示出混乱的重置。因此,我们认为,作为对不同生活环境的适应,Mandarin和Brandt田鼠在肾脏中具有不同的分子昼夜节律时钟表达调节模式。中国田鼠似乎更适应黑暗的环境,而勃兰特田鼠更依赖外部的光照条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Expression patterns of clock genes in the kidney of two Lasiopodomys species
Previous studies showed that the kidney has its own molecular circadian clock expression regulation that maintains the homeostasis of physiological processes. However, limited information is available on the molecular mechanisms of the kidney circadian rhythm in subterranean rodents. Here, we report circadian gene expression in the kidney of subterranean Mandarin voles and the related aboveground Brandt’s voles, reared under 12L:12D (LD) or dark (DD) conditions, respectively. The results showed that the rhythmic genes were represented in Brandt’s voles in higher numbers under LD than DD conditions, but the number of rhythmic genes in Mandarin voles was similar between the two treatment conditions. The gene expression levels at different timepoints all showed reduced results under DD conditions compared with those in the LD cycle in Brandt’s voles, whereas the expression levels of the tested genes at certain Zeitgeber timepoints showed higher results than in the LD cycle in Mandarin voles. The gene expression peak showed chaotic resetting under DD conditions in both voles. We thus suggest that Mandarin and Brandt’s voles have different molecular circadian clock expression adjustment patterns in the kidney as an adaptation to different living environments. Mandarin voles seem to be more adapted to the dark environment, while Brandt’s voles are more dependent on external light conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信