Kleinian轨道集的维数

IF 1.1 4区 数学 Q1 MATHEMATICS
T. Bartlett, J. Fraser
{"title":"Kleinian轨道集的维数","authors":"T. Bartlett, J. Fraser","doi":"10.4171/jfg/139","DOIUrl":null,"url":null,"abstract":"Given a non-empty bounded subset of hyperbolic space and a Kleinian group acting on that space, the orbital set is the orbit of the given set under the action of the group. We may view orbital sets as bounded (often fractal) subsets of Euclidean space. We prove that the upper box dimension of an orbital set is given by the maximum of three quantities: the upper box dimension of the given set; the Poincar\\'e exponent of the Kleinian group; and the upper box dimension of the limit set of the Kleinian group. Since we do not make any assumptions about the Kleinian group, none of the terms in the maximum can be removed in general. We show by constructing an explicit example that the (hyperbolic) boundedness assumption on $C$ cannot be removed in general.","PeriodicalId":48484,"journal":{"name":"Journal of Fractal Geometry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dimensions of Kleinian orbital sets\",\"authors\":\"T. Bartlett, J. Fraser\",\"doi\":\"10.4171/jfg/139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a non-empty bounded subset of hyperbolic space and a Kleinian group acting on that space, the orbital set is the orbit of the given set under the action of the group. We may view orbital sets as bounded (often fractal) subsets of Euclidean space. We prove that the upper box dimension of an orbital set is given by the maximum of three quantities: the upper box dimension of the given set; the Poincar\\\\'e exponent of the Kleinian group; and the upper box dimension of the limit set of the Kleinian group. Since we do not make any assumptions about the Kleinian group, none of the terms in the maximum can be removed in general. We show by constructing an explicit example that the (hyperbolic) boundedness assumption on $C$ cannot be removed in general.\",\"PeriodicalId\":48484,\"journal\":{\"name\":\"Journal of Fractal Geometry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fractal Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jfg/139\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fractal Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jfg/139","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定双曲空间的非空有界子集和作用于该空间的Kleinian群,轨道集是给定集合在群作用下的轨道集。我们可以把轨道集看作欧几里德空间的有界(通常是分形)子集。我们证明了轨道集的上盒维数由三个量的最大值给出:给定集的上盒维数;Kleinian群的Poincar 'e指数;Kleinian群极限集的上盒维数。由于我们没有对Kleinian群做任何假设,所以一般来说,最大值中的任何一项都不能去掉。通过构造一个显式的例子,我们证明了$C$上的(双曲)有界性假设一般是不能去除的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensions of Kleinian orbital sets
Given a non-empty bounded subset of hyperbolic space and a Kleinian group acting on that space, the orbital set is the orbit of the given set under the action of the group. We may view orbital sets as bounded (often fractal) subsets of Euclidean space. We prove that the upper box dimension of an orbital set is given by the maximum of three quantities: the upper box dimension of the given set; the Poincar\'e exponent of the Kleinian group; and the upper box dimension of the limit set of the Kleinian group. Since we do not make any assumptions about the Kleinian group, none of the terms in the maximum can be removed in general. We show by constructing an explicit example that the (hyperbolic) boundedness assumption on $C$ cannot be removed in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信