Sarawute Sribunhung, K. Nakprasit, Kittikorn Nakprasit, Pongpat Sittitrai
{"title":"无4环和7环平面图上的松弛DP染色和DP染色的另一个推广","authors":"Sarawute Sribunhung, K. Nakprasit, Kittikorn Nakprasit, Pongpat Sittitrai","doi":"10.7151/dmgt.2405","DOIUrl":null,"url":null,"abstract":"Abstract DP-coloring is generalized via relaxed coloring and variable degeneracy in [P. Sittitrai and K. Nakprasit, Su cient conditions on planar graphs to have a relaxed DP-3-coloring, Graphs Combin. 35 (2019) 837–845], [K.M. Nakprasit and K. Nakprasit, A generalization of some results on list coloring and DP-coloring, Graphs Combin. 36 (2020) 1189–1201] and [P. Sittitrai and K. Nakprasit, An analogue of DP-coloring for variable degeneracy and its applications, Discuss. Math. Graph Theory]. In this work, we introduce another concept that includes two previous generalizations. We demonstrate its application on planar graphs without 4-cycles and 7-cycles. One implication is that the vertex set of every planar graph without 4-cycles and 7-cycles can be partitioned into three sets in which each of them induces a linear forest and one of them is an independent set. Additionally, we show that every planar graph without 4-cycles and 7-cycles is DP-(1, 1, 1)-colorable. This generalizes a result of Lih et al. [A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269–273] that every planar graph without 4-cycles and 7-cycles is (3, 1)*-choosable.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":"43 1","pages":"287 - 297"},"PeriodicalIF":0.5000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Relaxed DP-Coloring and another Generalization of DP-Coloring on Planar Graphs without 4-Cycles and 7-Cycles\",\"authors\":\"Sarawute Sribunhung, K. Nakprasit, Kittikorn Nakprasit, Pongpat Sittitrai\",\"doi\":\"10.7151/dmgt.2405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract DP-coloring is generalized via relaxed coloring and variable degeneracy in [P. Sittitrai and K. Nakprasit, Su cient conditions on planar graphs to have a relaxed DP-3-coloring, Graphs Combin. 35 (2019) 837–845], [K.M. Nakprasit and K. Nakprasit, A generalization of some results on list coloring and DP-coloring, Graphs Combin. 36 (2020) 1189–1201] and [P. Sittitrai and K. Nakprasit, An analogue of DP-coloring for variable degeneracy and its applications, Discuss. Math. Graph Theory]. In this work, we introduce another concept that includes two previous generalizations. We demonstrate its application on planar graphs without 4-cycles and 7-cycles. One implication is that the vertex set of every planar graph without 4-cycles and 7-cycles can be partitioned into three sets in which each of them induces a linear forest and one of them is an independent set. Additionally, we show that every planar graph without 4-cycles and 7-cycles is DP-(1, 1, 1)-colorable. This generalizes a result of Lih et al. [A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269–273] that every planar graph without 4-cycles and 7-cycles is (3, 1)*-choosable.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":\"43 1\",\"pages\":\"287 - 297\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2405\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2405","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Relaxed DP-Coloring and another Generalization of DP-Coloring on Planar Graphs without 4-Cycles and 7-Cycles
Abstract DP-coloring is generalized via relaxed coloring and variable degeneracy in [P. Sittitrai and K. Nakprasit, Su cient conditions on planar graphs to have a relaxed DP-3-coloring, Graphs Combin. 35 (2019) 837–845], [K.M. Nakprasit and K. Nakprasit, A generalization of some results on list coloring and DP-coloring, Graphs Combin. 36 (2020) 1189–1201] and [P. Sittitrai and K. Nakprasit, An analogue of DP-coloring for variable degeneracy and its applications, Discuss. Math. Graph Theory]. In this work, we introduce another concept that includes two previous generalizations. We demonstrate its application on planar graphs without 4-cycles and 7-cycles. One implication is that the vertex set of every planar graph without 4-cycles and 7-cycles can be partitioned into three sets in which each of them induces a linear forest and one of them is an independent set. Additionally, we show that every planar graph without 4-cycles and 7-cycles is DP-(1, 1, 1)-colorable. This generalizes a result of Lih et al. [A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (2001) 269–273] that every planar graph without 4-cycles and 7-cycles is (3, 1)*-choosable.
期刊介绍:
The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.