正则链群不等式组的奇解

IF 1 Q1 MATHEMATICS
Daniel C. Slilaty
{"title":"正则链群不等式组的奇解","authors":"Daniel C. Slilaty","doi":"10.47443/dml.2023.033","DOIUrl":null,"url":null,"abstract":"Hoffman’s theorem on feasible circulations and Ghouila-Houry’s theorem on feasible tensions are classical results of graph theory. Camion generalized these results to systems of inequalities over regular chain groups. An analogue of Camion’s result is proved in which solutions can be forced to be odd valued. The obtained result also generalizes the results of Pretzel and Youngs as well as Slilaty. It is also shown how Ghouila-Houry’s result can be used to give a new proof of the graph-coloring theorem of Minty and Vitaver.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Odd Solutions to Systems of Inequalities Coming From Regular Chain Groups\",\"authors\":\"Daniel C. Slilaty\",\"doi\":\"10.47443/dml.2023.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hoffman’s theorem on feasible circulations and Ghouila-Houry’s theorem on feasible tensions are classical results of graph theory. Camion generalized these results to systems of inequalities over regular chain groups. An analogue of Camion’s result is proved in which solutions can be forced to be odd valued. The obtained result also generalizes the results of Pretzel and Youngs as well as Slilaty. It is also shown how Ghouila-Houry’s result can be used to give a new proof of the graph-coloring theorem of Minty and Vitaver.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

关于可行循环的Hoffman定理和关于可行张力的Ghouila-Houry定理是图论的经典结果。Camion将这些结果推广到正则链群上的不等式系统。证明了Camion结果的一个类比,其中解可以被强制为奇值。所得结果也推广了Pretzel和Youngs以及Slilaty的结果。并给出了如何利用Ghouila-Houry的结果给出Minty和Vitaver的图着色定理的一个新的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Odd Solutions to Systems of Inequalities Coming From Regular Chain Groups
Hoffman’s theorem on feasible circulations and Ghouila-Houry’s theorem on feasible tensions are classical results of graph theory. Camion generalized these results to systems of inequalities over regular chain groups. An analogue of Camion’s result is proved in which solutions can be forced to be odd valued. The obtained result also generalizes the results of Pretzel and Youngs as well as Slilaty. It is also shown how Ghouila-Houry’s result can be used to give a new proof of the graph-coloring theorem of Minty and Vitaver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信