PeleC:可压缩反应流的自适应网格细化求解器

IF 2.5 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
M. T. Henry de Frahan, Jonathan S. Rood, M. Day, H. Sitaraman, S. Yellapantula, Bruce A. Perry, R. Grout, A. Almgren, Weiqun Zhang, J. Bell, Jacqueline H. Chen
{"title":"PeleC:可压缩反应流的自适应网格细化求解器","authors":"M. T. Henry de Frahan, Jonathan S. Rood, M. Day, H. Sitaraman, S. Yellapantula, Bruce A. Perry, R. Grout, A. Almgren, Weiqun Zhang, J. Bell, Jacqueline H. Chen","doi":"10.1177/10943420221121151","DOIUrl":null,"url":null,"abstract":"Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale machines. We introduce PeleC, the compressible solver in the Pele suite, and detail its capabilities, including complex geometry representation, chemistry integration, and discretization. We present a comparison of development efforts using both OpenACC and AMReX’s C++ performance portability framework for execution on multiple GPU architectures. We discuss relevant details that have allowed PeleC to achieve high performance and scalability. PeleC’s performance characteristics are measured through relevant simulations on multiple supercomputers. The success of PeleC’s design for exascale is exhibited through demonstration of a 160 billion cell simulation and weak scaling onto 100% of Summit, an NVIDIA-based GPU supercomputer at Oak Ridge National Laboratory. Our results provide confidence that PeleC will enable future combustion science simulations with unprecedented fidelity.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"37 1","pages":"115 - 131"},"PeriodicalIF":2.5000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"PeleC: An adaptive mesh refinement solver for compressible reacting flows\",\"authors\":\"M. T. Henry de Frahan, Jonathan S. Rood, M. Day, H. Sitaraman, S. Yellapantula, Bruce A. Perry, R. Grout, A. Almgren, Weiqun Zhang, J. Bell, Jacqueline H. Chen\",\"doi\":\"10.1177/10943420221121151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale machines. We introduce PeleC, the compressible solver in the Pele suite, and detail its capabilities, including complex geometry representation, chemistry integration, and discretization. We present a comparison of development efforts using both OpenACC and AMReX’s C++ performance portability framework for execution on multiple GPU architectures. We discuss relevant details that have allowed PeleC to achieve high performance and scalability. PeleC’s performance characteristics are measured through relevant simulations on multiple supercomputers. The success of PeleC’s design for exascale is exhibited through demonstration of a 160 billion cell simulation and weak scaling onto 100% of Summit, an NVIDIA-based GPU supercomputer at Oak Ridge National Laboratory. Our results provide confidence that PeleC will enable future combustion science simulations with unprecedented fidelity.\",\"PeriodicalId\":54957,\"journal\":{\"name\":\"International Journal of High Performance Computing Applications\",\"volume\":\"37 1\",\"pages\":\"115 - 131\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Performance Computing Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10943420221121151\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420221121151","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 16

摘要

燃烧应用的反应流模拟需要广泛的计算能力。利用AMReX库,Pele燃烧模拟工具套件针对现有的最大超级计算机和未来的百亿亿次机器。我们将介绍Pele套件中的可压缩解算器PeleC,并详细介绍其功能,包括复杂几何表示、化学集成和离散化。我们比较了使用OpenACC和AMReX的c++性能可移植性框架在多种GPU架构上执行的开发工作。我们讨论了允许PeleC实现高性能和可伸缩性的相关细节。通过在多台超级计算机上的相关模拟,测量了PeleC的性能特性。通过在橡树岭国家实验室的基于nvidia的GPU超级计算机Summit上进行1600亿个单元模拟和弱缩放,PeleC的百亿亿次设计的成功得到了展示。我们的结果提供了信心,PeleC将使未来的燃烧科学模拟具有前所未有的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PeleC: An adaptive mesh refinement solver for compressible reacting flows
Reacting flow simulations for combustion applications require extensive computing capabilities. Leveraging the AMReX library, the Pele suite of combustion simulation tools targets the largest supercomputers available and future exascale machines. We introduce PeleC, the compressible solver in the Pele suite, and detail its capabilities, including complex geometry representation, chemistry integration, and discretization. We present a comparison of development efforts using both OpenACC and AMReX’s C++ performance portability framework for execution on multiple GPU architectures. We discuss relevant details that have allowed PeleC to achieve high performance and scalability. PeleC’s performance characteristics are measured through relevant simulations on multiple supercomputers. The success of PeleC’s design for exascale is exhibited through demonstration of a 160 billion cell simulation and weak scaling onto 100% of Summit, an NVIDIA-based GPU supercomputer at Oak Ridge National Laboratory. Our results provide confidence that PeleC will enable future combustion science simulations with unprecedented fidelity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of High Performance Computing Applications
International Journal of High Performance Computing Applications 工程技术-计算机:跨学科应用
CiteScore
6.10
自引率
6.50%
发文量
32
审稿时长
>12 weeks
期刊介绍: With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信