一类用分数算子和一般非线性模拟前列腺癌症生长的相场系统的平稳性

IF 0.6 4区 数学 Q3 MATHEMATICS
P. Colli, G. Gilardi, J. Sprekels
{"title":"一类用分数算子和一般非线性模拟前列腺癌症生长的相场系统的平稳性","authors":"P. Colli, G. Gilardi, J. Sprekels","doi":"10.4171/rlm/969","DOIUrl":null,"url":null,"abstract":"This paper deals with a general system of equations and conditions arising from a mathematical model of prostate cancer growth with chemotherapy and antiangiogenic therapy that has been recently introduced and analyzed (see [P. Colli et al., Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, Math. Models Methods Appl. Sci. 30 (2020), 1253–1295]). The related system includes two evolutionary operator equations involving fractional powers of selfadjoint, nonnegative, unbounded linear operators having compact resolvents. Both equations contain nonlinearities and in particular the equation describing the dynamics of the tumor phase variable has the structure of a Allen–Cahn equation with double-well potential and additional nonlinearity depending also on the other variable, which represents the nutrient concentration. The equation for the nutrient concentration is nonlinear as well, with a term coupling both variables. For this system we design an existence, uniqueness and continuous dependence theory by setting up a careful analysis which","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness for a class of phase-field systems modeling prostate cancer growth with fractional operators and general nonlinearities\",\"authors\":\"P. Colli, G. Gilardi, J. Sprekels\",\"doi\":\"10.4171/rlm/969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a general system of equations and conditions arising from a mathematical model of prostate cancer growth with chemotherapy and antiangiogenic therapy that has been recently introduced and analyzed (see [P. Colli et al., Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, Math. Models Methods Appl. Sci. 30 (2020), 1253–1295]). The related system includes two evolutionary operator equations involving fractional powers of selfadjoint, nonnegative, unbounded linear operators having compact resolvents. Both equations contain nonlinearities and in particular the equation describing the dynamics of the tumor phase variable has the structure of a Allen–Cahn equation with double-well potential and additional nonlinearity depending also on the other variable, which represents the nutrient concentration. The equation for the nutrient concentration is nonlinear as well, with a term coupling both variables. For this system we design an existence, uniqueness and continuous dependence theory by setting up a careful analysis which\",\"PeriodicalId\":54497,\"journal\":{\"name\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Matematica e Applicazioni\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rlm/969\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/969","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了最近引入和分析的前列腺癌症生长与化疗和抗血管生成治疗的数学模型产生的一般方程组和条件(见[P.Colli等人,具有化疗和抗血管生成治疗效果的前列腺癌症生长相场模型的数学分析和模拟研究,数学模型方法应用科学30(2020),1253–1295])。相关系统包括两个演化算子方程,涉及具有紧致预解的自伴、非负、无界线性算子的分数次幂。这两个方程都包含非线性,特别是描述肿瘤期变量动力学的方程具有Allen–Cahn方程的结构,该方程具有双井电位和额外的非线性,也取决于代表营养浓度的另一个变量。营养物浓度的方程也是非线性的,有一个耦合两个变量的项。对于这个系统,我们通过仔细的分析,设计了一个存在性、唯一性和连续依赖性理论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness for a class of phase-field systems modeling prostate cancer growth with fractional operators and general nonlinearities
This paper deals with a general system of equations and conditions arising from a mathematical model of prostate cancer growth with chemotherapy and antiangiogenic therapy that has been recently introduced and analyzed (see [P. Colli et al., Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects, Math. Models Methods Appl. Sci. 30 (2020), 1253–1295]). The related system includes two evolutionary operator equations involving fractional powers of selfadjoint, nonnegative, unbounded linear operators having compact resolvents. Both equations contain nonlinearities and in particular the equation describing the dynamics of the tumor phase variable has the structure of a Allen–Cahn equation with double-well potential and additional nonlinearity depending also on the other variable, which represents the nutrient concentration. The equation for the nutrient concentration is nonlinear as well, with a term coupling both variables. For this system we design an existence, uniqueness and continuous dependence theory by setting up a careful analysis which
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信