无界时间尺度上Sturm-Liouville算子解的一些性质

Q4 Mathematics
B. Allahverdiev, H. Tuna
{"title":"无界时间尺度上Sturm-Liouville算子解的一些性质","authors":"B. Allahverdiev, H. Tuna","doi":"10.24193/MATHCLUJ.2019.1.01","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the resolvent operator of Sturm-Liouville problem on unbounded time scales. We obtain integral representations for the resolvent of this operator. Later, we discuss some properties of the resolvent operator, such as Hilbert-Schmidt’s kernel property and compactness. Finally, we give a formula for the Titchmarsh-Weyl function of the Sturm-Liouville problem on unbounded time scales. MSC 2010. 34N05, 34L05, 47A10.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Some properties of the resolvent of Sturm-Liouville operators on unbounded time scales\",\"authors\":\"B. Allahverdiev, H. Tuna\",\"doi\":\"10.24193/MATHCLUJ.2019.1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the resolvent operator of Sturm-Liouville problem on unbounded time scales. We obtain integral representations for the resolvent of this operator. Later, we discuss some properties of the resolvent operator, such as Hilbert-Schmidt’s kernel property and compactness. Finally, we give a formula for the Titchmarsh-Weyl function of the Sturm-Liouville problem on unbounded time scales. MSC 2010. 34N05, 34L05, 47A10.\",\"PeriodicalId\":39356,\"journal\":{\"name\":\"Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/MATHCLUJ.2019.1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/MATHCLUJ.2019.1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了无界时间尺度上Sturm-Liouville问题的预解算子。我们得到了这个算子的预解式的积分表示。随后,我们讨论了预解算子的一些性质,如Hilbert-Schmidt的核性质和紧性。最后,我们给出了无界时间尺度上Sturm-Liouville问题的Titchmarsh-Weyl函数的一个公式。MSC 2010。34N05、34L05、47A10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some properties of the resolvent of Sturm-Liouville operators on unbounded time scales
In this article, we investigate the resolvent operator of Sturm-Liouville problem on unbounded time scales. We obtain integral representations for the resolvent of this operator. Later, we discuss some properties of the resolvent operator, such as Hilbert-Schmidt’s kernel property and compactness. Finally, we give a formula for the Titchmarsh-Weyl function of the Sturm-Liouville problem on unbounded time scales. MSC 2010. 34N05, 34L05, 47A10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信