图的顶点位置数

IF 0.5 4区 数学 Q3 MATHEMATICS
Maya G. S. Thankachy, Ullas Chandran S.V., J. Tuite, Elias John Thomas, Gabriele Di Stefano, G. Erskine
{"title":"图的顶点位置数","authors":"Maya G. S. Thankachy, Ullas Chandran S.V., J. Tuite, Elias John Thomas, Gabriele Di Stefano, G. Erskine","doi":"10.7151/dmgt.2491","DOIUrl":null,"url":null,"abstract":"In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex $x$ of a connected graph $G$, we say that a set $S \\subseteq V(G)$ is an \\emph{$x$-position set} if for any $y \\in S$ the shortest $x,y$-paths in $G$ contain no point of $S\\setminus \\{ y\\}$. We investigate the largest and smallest orders of maximum $x$-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.","PeriodicalId":48875,"journal":{"name":"Discussiones Mathematicae Graph Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the vertex position number of graphs\",\"authors\":\"Maya G. S. Thankachy, Ullas Chandran S.V., J. Tuite, Elias John Thomas, Gabriele Di Stefano, G. Erskine\",\"doi\":\"10.7151/dmgt.2491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex $x$ of a connected graph $G$, we say that a set $S \\\\subseteq V(G)$ is an \\\\emph{$x$-position set} if for any $y \\\\in S$ the shortest $x,y$-paths in $G$ contain no point of $S\\\\setminus \\\\{ y\\\\}$. We investigate the largest and smallest orders of maximum $x$-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.\",\"PeriodicalId\":48875,\"journal\":{\"name\":\"Discussiones Mathematicae Graph Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussiones Mathematicae Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2491\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussiones Mathematicae Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2491","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们将可见性的概念从整数格中的一个点推广到图论的设置。对于连通图$G$的顶点$x$,我们说集合$S\substeqV(G)$是emph{$x$-位置集},如果对于S$中的任何$y\,$G$中最短的$x,y$-路径不包含$S\setminus\{y\}$的点。我们研究了图中最大$x$位置集的最大阶和最小阶,确定了常见图类的这些数,并给出了周长、顶点度、直径和半径的边界。最后讨论了图中求最大顶点位置集的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the vertex position number of graphs
In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex $x$ of a connected graph $G$, we say that a set $S \subseteq V(G)$ is an \emph{$x$-position set} if for any $y \in S$ the shortest $x,y$-paths in $G$ contain no point of $S\setminus \{ y\}$. We investigate the largest and smallest orders of maximum $x$-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
22
审稿时长
53 weeks
期刊介绍: The Discussiones Mathematicae Graph Theory publishes high-quality refereed original papers. Occasionally, very authoritative expository survey articles and notes of exceptional value can be published. The journal is mainly devoted to the following topics in Graph Theory: colourings, partitions (general colourings), hereditary properties, independence and domination, structures in graphs (sets, paths, cycles, etc.), local properties, products of graphs as well as graph algorithms related to these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信