P. Asaithambi, Mamuye Busier Yesuf, Rajendran Govindarajan, N. M. Hariharan, Perarasu Thangavelu, E. Alemayehu
{"title":"基于电化学和深度氧化工艺处理工业废水的混合工艺发展综述","authors":"P. Asaithambi, Mamuye Busier Yesuf, Rajendran Govindarajan, N. M. Hariharan, Perarasu Thangavelu, E. Alemayehu","doi":"10.1155/2022/1105376","DOIUrl":null,"url":null,"abstract":"Nowadays, increased human activity, industrialization, and urbanization result in the production of enormous quantities of wastewater. Generally, physicochemical and biological methods are employed to treat industrial effluent and wastewater and have demonstrated high efficacy in removing pollutants. However, some industrial effluent and wastewater contain contaminants that are extremely difficult to remove using standard physicochemical and biological processes. Previously, electrochemical and hybrid advanced oxidation processes (AOP) were considered a viable and promising alternative for achieving an adequate effluent treatment strategy in such instances. These processes rely on the production of hydroxyl radicals, which are highly reactive oxidants that efficiently break down contaminants found in wastewater and industrial effluent. This review focuses on the removal of contaminants from industrial effluents and wastewater through the integration of electrochemical and advanced oxidation techniques. These processes include electrooxidation, electrocoagulation/electroflocculation, electroflotation, photo-Fenton, ozone-photo-Fenton, sono-photo-Fenton, photo-electro-Fenton, ozone/electrocoagulation, sono-electrocoagulation, and peroxi/photo/electrocoagulation. The data acquired from over 150 published articles, most of which were laboratory experiments, demonstrated that the hybrid process is more effective in removing contaminants from industrial effluent and wastewater than standalone processes.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Review of Hybrid Process Development Based on Electrochemical and Advanced Oxidation Processes for the Treatment of Industrial Wastewater\",\"authors\":\"P. Asaithambi, Mamuye Busier Yesuf, Rajendran Govindarajan, N. M. Hariharan, Perarasu Thangavelu, E. Alemayehu\",\"doi\":\"10.1155/2022/1105376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, increased human activity, industrialization, and urbanization result in the production of enormous quantities of wastewater. Generally, physicochemical and biological methods are employed to treat industrial effluent and wastewater and have demonstrated high efficacy in removing pollutants. However, some industrial effluent and wastewater contain contaminants that are extremely difficult to remove using standard physicochemical and biological processes. Previously, electrochemical and hybrid advanced oxidation processes (AOP) were considered a viable and promising alternative for achieving an adequate effluent treatment strategy in such instances. These processes rely on the production of hydroxyl radicals, which are highly reactive oxidants that efficiently break down contaminants found in wastewater and industrial effluent. This review focuses on the removal of contaminants from industrial effluents and wastewater through the integration of electrochemical and advanced oxidation techniques. These processes include electrooxidation, electrocoagulation/electroflocculation, electroflotation, photo-Fenton, ozone-photo-Fenton, sono-photo-Fenton, photo-electro-Fenton, ozone/electrocoagulation, sono-electrocoagulation, and peroxi/photo/electrocoagulation. The data acquired from over 150 published articles, most of which were laboratory experiments, demonstrated that the hybrid process is more effective in removing contaminants from industrial effluent and wastewater than standalone processes.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/1105376\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/1105376","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A Review of Hybrid Process Development Based on Electrochemical and Advanced Oxidation Processes for the Treatment of Industrial Wastewater
Nowadays, increased human activity, industrialization, and urbanization result in the production of enormous quantities of wastewater. Generally, physicochemical and biological methods are employed to treat industrial effluent and wastewater and have demonstrated high efficacy in removing pollutants. However, some industrial effluent and wastewater contain contaminants that are extremely difficult to remove using standard physicochemical and biological processes. Previously, electrochemical and hybrid advanced oxidation processes (AOP) were considered a viable and promising alternative for achieving an adequate effluent treatment strategy in such instances. These processes rely on the production of hydroxyl radicals, which are highly reactive oxidants that efficiently break down contaminants found in wastewater and industrial effluent. This review focuses on the removal of contaminants from industrial effluents and wastewater through the integration of electrochemical and advanced oxidation techniques. These processes include electrooxidation, electrocoagulation/electroflocculation, electroflotation, photo-Fenton, ozone-photo-Fenton, sono-photo-Fenton, photo-electro-Fenton, ozone/electrocoagulation, sono-electrocoagulation, and peroxi/photo/electrocoagulation. The data acquired from over 150 published articles, most of which were laboratory experiments, demonstrated that the hybrid process is more effective in removing contaminants from industrial effluent and wastewater than standalone processes.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.