地基尺寸对石卵石隔震效果的影响

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
I. Banović, J. Radnić, N. Grgić
{"title":"地基尺寸对石卵石隔震效果的影响","authors":"I. Banović, J. Radnić, N. Grgić","doi":"10.12989/EAS.2020.19.2.103","DOIUrl":null,"url":null,"abstract":"The effect of the foundation size on the efficiency of seismic base isolation using a layer of stone pebbles is experimentally investigated. Four scaled models of buildings with different stiffnesses (from very stiff to soft) were tested, each with the so-called small and large foundation, and exposed to four different accelerograms (different predominant periods and durations). Tests were conducted so that the strains in the model remained elastic and afterwards the models were tested until collapse. Each model was tested for the case of the foundation being supported on a rigid base and on an aseismic layer. Compared to the smaller foundation, the larger foundation results in a reduced rocking effect, higher earthquake forces and lower bearing capacity of the tested models, with respectable efficiency (reduced strain/stress, displacement and increase of the ultimate bearing capacity of the model) for the considered seismic base isolation compared to the foundation on a rigid base.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":"19 1","pages":"103-117"},"PeriodicalIF":1.4000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Foundation size effect on the efficiency of seismic base isolation using a layer of stone pebbles\",\"authors\":\"I. Banović, J. Radnić, N. Grgić\",\"doi\":\"10.12989/EAS.2020.19.2.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effect of the foundation size on the efficiency of seismic base isolation using a layer of stone pebbles is experimentally investigated. Four scaled models of buildings with different stiffnesses (from very stiff to soft) were tested, each with the so-called small and large foundation, and exposed to four different accelerograms (different predominant periods and durations). Tests were conducted so that the strains in the model remained elastic and afterwards the models were tested until collapse. Each model was tested for the case of the foundation being supported on a rigid base and on an aseismic layer. Compared to the smaller foundation, the larger foundation results in a reduced rocking effect, higher earthquake forces and lower bearing capacity of the tested models, with respectable efficiency (reduced strain/stress, displacement and increase of the ultimate bearing capacity of the model) for the considered seismic base isolation compared to the foundation on a rigid base.\",\"PeriodicalId\":49080,\"journal\":{\"name\":\"Earthquakes and Structures\",\"volume\":\"19 1\",\"pages\":\"103-117\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquakes and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/EAS.2020.19.2.103\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2020.19.2.103","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 8

摘要

试验研究了基础尺寸对采用卵石层隔震基础效率的影响。测试了四个具有不同刚度(从非常刚到柔软)的建筑比例模型,每个模型都有所谓的小型和大型基础,并暴露在四个不同的加速度图(不同的主周期和持续时间)下。进行测试,使模型中的应变保持弹性,然后对模型进行测试,直到崩溃。每个模型都针对刚性基础和抗震层支撑的情况进行了测试。与较小的基础相比,较大的基础可减少摇摆效应,提高地震力,降低测试模型的承载力,与刚性基础相比,考虑的地震基础隔震具有可观的效率(降低应变/应力、位移和提高模型的极限承载力)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Foundation size effect on the efficiency of seismic base isolation using a layer of stone pebbles
The effect of the foundation size on the efficiency of seismic base isolation using a layer of stone pebbles is experimentally investigated. Four scaled models of buildings with different stiffnesses (from very stiff to soft) were tested, each with the so-called small and large foundation, and exposed to four different accelerograms (different predominant periods and durations). Tests were conducted so that the strains in the model remained elastic and afterwards the models were tested until collapse. Each model was tested for the case of the foundation being supported on a rigid base and on an aseismic layer. Compared to the smaller foundation, the larger foundation results in a reduced rocking effect, higher earthquake forces and lower bearing capacity of the tested models, with respectable efficiency (reduced strain/stress, displacement and increase of the ultimate bearing capacity of the model) for the considered seismic base isolation compared to the foundation on a rigid base.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquakes and Structures
Earthquakes and Structures ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
2.90
自引率
20.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Earthquakes and Structures, An International Journal, focuses on the effects of earthquakes on civil engineering structures. The journal will serve as a powerful repository of technical information and will provide a highimpact publication platform for the global community of researchers in the traditional, as well as emerging, subdisciplines of the broader earthquake engineering field. Specifically, some of the major topics covered by the Journal include: .. characterization of strong ground motions, .. quantification of earthquake demand and structural capacity, .. design of earthquake resistant structures and foundations, .. experimental and computational methods, .. seismic regulations and building codes, .. seismic hazard assessment, .. seismic risk mitigation, .. site effects and soil-structure interaction, .. assessment, repair and strengthening of existing structures, including historic structures and monuments, and .. emerging technologies including passive control technologies, structural monitoring systems, and cyberinfrastructure tools for seismic data management, experimental applications, early warning and response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信