Rut Bryl, C. Dompe, M. Jankowski, K. Stefańska, A. G. Narenji, Jakub Kulus, M. Kulus, M. Wieczorkiewicz, G. Wąsiatycz, J. Jaśkowski, M. Kaczmarek, J. Petitte, P. Mozdziak, P. Antosik, D. Bukowska
{"title":"成骨分化对脂肪干细胞干细胞样特性的影响——RT-qPCR研究","authors":"Rut Bryl, C. Dompe, M. Jankowski, K. Stefańska, A. G. Narenji, Jakub Kulus, M. Kulus, M. Wieczorkiewicz, G. Wąsiatycz, J. Jaśkowski, M. Kaczmarek, J. Petitte, P. Mozdziak, P. Antosik, D. Bukowska","doi":"10.2478/acb-2020-0020","DOIUrl":null,"url":null,"abstract":"Abstract ADSCs are readily accessible and widely available. Isolated through a minimally invasive procedure from adipose depots, they can be found at diverse body location, where they served various functions, including energy homeostasis. They can be obtained upon surgeries from otherwise waste tissues, like after excision of fat tissue or liposuction. In addition, due to the possibility to isolate many ADSCs, in vitro proliferation can be performed in a short time period, resulting in cells showing more predictable results[1]. For this study ADSCs were obtained from waste material following routing sterilization procedures of dogs. This study aimed to analyse the expression of MSC specific markers before and after in vitro differentiation of ASCs. Three positive and three negative markers were analysed, CD105, CD73, CD90, CD34, CD14 and CD45. There were significant differences detected in the expression of all of the genes, with most of them exhibiting notable downregulation. The only exception, CD14 showed major upregulation after the process of differentiation. These changes confirm the success of differentiation, as well as suggest that this process significantly lowers the stem-like ability of ASCs. This knowledge should serve as a reference for further molecular and clinical studies, possibly aiding the understanding of the internal mechanisms governing the differentiation and stemness of ASCs, to enable their widespread and safe application in regenerative medicine. Running title: Mesenchymal markers during ASC osteogenic differentiation","PeriodicalId":18329,"journal":{"name":"Medical Journal of Cell Biology","volume":"8 1","pages":"158 - 163"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of osteogenic differentiation on the stem-like properties of adipose derived stem cells – an RT-qPCR study\",\"authors\":\"Rut Bryl, C. Dompe, M. Jankowski, K. Stefańska, A. G. Narenji, Jakub Kulus, M. Kulus, M. Wieczorkiewicz, G. Wąsiatycz, J. Jaśkowski, M. Kaczmarek, J. Petitte, P. Mozdziak, P. Antosik, D. Bukowska\",\"doi\":\"10.2478/acb-2020-0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract ADSCs are readily accessible and widely available. Isolated through a minimally invasive procedure from adipose depots, they can be found at diverse body location, where they served various functions, including energy homeostasis. They can be obtained upon surgeries from otherwise waste tissues, like after excision of fat tissue or liposuction. In addition, due to the possibility to isolate many ADSCs, in vitro proliferation can be performed in a short time period, resulting in cells showing more predictable results[1]. For this study ADSCs were obtained from waste material following routing sterilization procedures of dogs. This study aimed to analyse the expression of MSC specific markers before and after in vitro differentiation of ASCs. Three positive and three negative markers were analysed, CD105, CD73, CD90, CD34, CD14 and CD45. There were significant differences detected in the expression of all of the genes, with most of them exhibiting notable downregulation. The only exception, CD14 showed major upregulation after the process of differentiation. These changes confirm the success of differentiation, as well as suggest that this process significantly lowers the stem-like ability of ASCs. This knowledge should serve as a reference for further molecular and clinical studies, possibly aiding the understanding of the internal mechanisms governing the differentiation and stemness of ASCs, to enable their widespread and safe application in regenerative medicine. Running title: Mesenchymal markers during ASC osteogenic differentiation\",\"PeriodicalId\":18329,\"journal\":{\"name\":\"Medical Journal of Cell Biology\",\"volume\":\"8 1\",\"pages\":\"158 - 163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Journal of Cell Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acb-2020-0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Journal of Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acb-2020-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The influence of osteogenic differentiation on the stem-like properties of adipose derived stem cells – an RT-qPCR study
Abstract ADSCs are readily accessible and widely available. Isolated through a minimally invasive procedure from adipose depots, they can be found at diverse body location, where they served various functions, including energy homeostasis. They can be obtained upon surgeries from otherwise waste tissues, like after excision of fat tissue or liposuction. In addition, due to the possibility to isolate many ADSCs, in vitro proliferation can be performed in a short time period, resulting in cells showing more predictable results[1]. For this study ADSCs were obtained from waste material following routing sterilization procedures of dogs. This study aimed to analyse the expression of MSC specific markers before and after in vitro differentiation of ASCs. Three positive and three negative markers were analysed, CD105, CD73, CD90, CD34, CD14 and CD45. There were significant differences detected in the expression of all of the genes, with most of them exhibiting notable downregulation. The only exception, CD14 showed major upregulation after the process of differentiation. These changes confirm the success of differentiation, as well as suggest that this process significantly lowers the stem-like ability of ASCs. This knowledge should serve as a reference for further molecular and clinical studies, possibly aiding the understanding of the internal mechanisms governing the differentiation and stemness of ASCs, to enable their widespread and safe application in regenerative medicine. Running title: Mesenchymal markers during ASC osteogenic differentiation