突出曲线的合集

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Michael Kemeny
{"title":"突出曲线的合集","authors":"Michael Kemeny","doi":"10.14231/ag-2020-020","DOIUrl":null,"url":null,"abstract":"We explore the concept of projections of syzygies and prove two new technical results; we firstly give a precise characterization of syzygy schemes in terms of their projections, secondly, we prove a converse to Aprodu's Projection Theorem. Applying these results, we prove that extremal syzygies of general curves of non-maximal gonality embedded by a linear system of sufficiently high degree arise from scrolls. Lastly, we prove Green's Conjecture for general covers of elliptic curves (of arbitrary degree) as well as proving a new result for curves of even genus and maximal gonality.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Projecting syzygies of curves\",\"authors\":\"Michael Kemeny\",\"doi\":\"10.14231/ag-2020-020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore the concept of projections of syzygies and prove two new technical results; we firstly give a precise characterization of syzygy schemes in terms of their projections, secondly, we prove a converse to Aprodu's Projection Theorem. Applying these results, we prove that extremal syzygies of general curves of non-maximal gonality embedded by a linear system of sufficiently high degree arise from scrolls. Lastly, we prove Green's Conjecture for general covers of elliptic curves (of arbitrary degree) as well as proving a new result for curves of even genus and maximal gonality.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14231/ag-2020-020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/ag-2020-020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

摘要

探讨了协同投影的概念,证明了两个新的技术成果;首先给出了合集格式的投影的精确刻画,其次证明了Aprodu投影定理的一个逆。应用这些结果,证明了由足够高次线性系统嵌入的一般非极大向性曲线的极值合是由卷形曲线产生的。最后,我们证明了任意次椭圆曲线一般覆盖的格林猜想,并证明了偶格和极大向性曲线的一个新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projecting syzygies of curves
We explore the concept of projections of syzygies and prove two new technical results; we firstly give a precise characterization of syzygy schemes in terms of their projections, secondly, we prove a converse to Aprodu's Projection Theorem. Applying these results, we prove that extremal syzygies of general curves of non-maximal gonality embedded by a linear system of sufficiently high degree arise from scrolls. Lastly, we prove Green's Conjecture for general covers of elliptic curves (of arbitrary degree) as well as proving a new result for curves of even genus and maximal gonality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信