关于局部紧半拓扑o -二单逆ω-半群

Q3 Mathematics
O. Gutik
{"title":"关于局部紧半拓扑o -二单逆ω-半群","authors":"O. Gutik","doi":"10.1515/taa-2018-0008","DOIUrl":null,"url":null,"abstract":"Abstract We describe the structure of Hausdorff locally compact semitopological O-bisimple inverse ω- semigroups with compact maximal subgroups. In particular, we show that a Hausdorff locally compact semitopological O-bisimple inverse ω-semigroup with a compact maximal subgroup is either compact or it is a topological sum of its H-classes. We describe the structure of Hausdorff locally compact semitopological O-bisimple inverse ω-semigroups with a monothetic maximal subgroups. We show the following dichotomy: a T1 locally compact semitopological Reilly semigroup (B(Z+, θ)0, τ) over the additive group of integers Z+, with adjoined zero and with a non-annihilating homomorphism is either compact or discrete. At the end we establish some properties of the remainder of the closure of the discrete Reilly semigroup B(Z+, θ) in a semitopological semigroup.","PeriodicalId":30611,"journal":{"name":"Topological Algebra and its Applications","volume":"6 1","pages":"101 - 77"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/taa-2018-0008","citationCount":"20","resultStr":"{\"title\":\"On locally compact semitopological O-bisimple inverse ω-semigroups\",\"authors\":\"O. Gutik\",\"doi\":\"10.1515/taa-2018-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We describe the structure of Hausdorff locally compact semitopological O-bisimple inverse ω- semigroups with compact maximal subgroups. In particular, we show that a Hausdorff locally compact semitopological O-bisimple inverse ω-semigroup with a compact maximal subgroup is either compact or it is a topological sum of its H-classes. We describe the structure of Hausdorff locally compact semitopological O-bisimple inverse ω-semigroups with a monothetic maximal subgroups. We show the following dichotomy: a T1 locally compact semitopological Reilly semigroup (B(Z+, θ)0, τ) over the additive group of integers Z+, with adjoined zero and with a non-annihilating homomorphism is either compact or discrete. At the end we establish some properties of the remainder of the closure of the discrete Reilly semigroup B(Z+, θ) in a semitopological semigroup.\",\"PeriodicalId\":30611,\"journal\":{\"name\":\"Topological Algebra and its Applications\",\"volume\":\"6 1\",\"pages\":\"101 - 77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/taa-2018-0008\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topological Algebra and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/taa-2018-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Algebra and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/taa-2018-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 20

摘要

摘要我们描述了具有紧致极大子群的Hausdorff局部紧致半拓扑O-双单逆ω-半群的结构。特别地,我们证明了具有紧致极大子群的Hausdorff局部紧致半拓扑O-双单逆ω-半群要么是紧致的,要么是其H-类的拓扑和。我们描述了具有一神论极大子群的Hausdorff局部紧半拓扑O-双单逆ω-半群的结构。我们证明了以下二分法:在整数Z+的可加群上的T1局部紧致半拓扑Reilly半群(B(Z+,θ)0,τ),具有邻接零和非零同态,是紧致的或离散的。最后,我们建立了半拓扑半群中离散Reilly半群B(Z+,θ)闭包余数的一些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On locally compact semitopological O-bisimple inverse ω-semigroups
Abstract We describe the structure of Hausdorff locally compact semitopological O-bisimple inverse ω- semigroups with compact maximal subgroups. In particular, we show that a Hausdorff locally compact semitopological O-bisimple inverse ω-semigroup with a compact maximal subgroup is either compact or it is a topological sum of its H-classes. We describe the structure of Hausdorff locally compact semitopological O-bisimple inverse ω-semigroups with a monothetic maximal subgroups. We show the following dichotomy: a T1 locally compact semitopological Reilly semigroup (B(Z+, θ)0, τ) over the additive group of integers Z+, with adjoined zero and with a non-annihilating homomorphism is either compact or discrete. At the end we establish some properties of the remainder of the closure of the discrete Reilly semigroup B(Z+, θ) in a semitopological semigroup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topological Algebra and its Applications
Topological Algebra and its Applications Mathematics-Algebra and Number Theory
CiteScore
1.20
自引率
0.00%
发文量
12
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信