基于GLCM的糖尿病视网膜病变眼底图像微动脉瘤的检测与分类

Q3 Engineering
E. Dhiravidachelvi, V. Rajamani, C. Manimegalai
{"title":"基于GLCM的糖尿病视网膜病变眼底图像微动脉瘤的检测与分类","authors":"E. Dhiravidachelvi, V. Rajamani, C. Manimegalai","doi":"10.1504/ijaip.2019.10024482","DOIUrl":null,"url":null,"abstract":"Diabetic retinopathy is a major cause of blindness and it includes the lesions like microaneurysms, haemorrhages, and exudates. Microaneurysms are the first clinical sign of diabetic retinopathy and it is a small red dot on the retinopathy fundus images. The number of micro aneurysms is used to indicate the severity of the disease. The proposed algorithm detects and classifies the micro aneurysm from diabetic retinopathy fundus images in low resolution images also. Initially the image is processed by a median filter and enhanced by contrast limited adaptive histogram equalisation (CLAHE). Micro aneurysms are detected by extended minima method for candidate extraction. The statistical features are extracted by grey level coocurrence matrix (GLCM) and are given to the classifier to classify microaneurysms accurately. These detected MA are validated by comparing with expert ophthalmologists' hand-drawn ground-truth images. The simulation results show the performance of the proposed algorithm.","PeriodicalId":38797,"journal":{"name":"International Journal of Advanced Intelligence Paradigms","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"GLCM-based detection and classification of microaneurysm in diabetic retinopathy fundus images\",\"authors\":\"E. Dhiravidachelvi, V. Rajamani, C. Manimegalai\",\"doi\":\"10.1504/ijaip.2019.10024482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic retinopathy is a major cause of blindness and it includes the lesions like microaneurysms, haemorrhages, and exudates. Microaneurysms are the first clinical sign of diabetic retinopathy and it is a small red dot on the retinopathy fundus images. The number of micro aneurysms is used to indicate the severity of the disease. The proposed algorithm detects and classifies the micro aneurysm from diabetic retinopathy fundus images in low resolution images also. Initially the image is processed by a median filter and enhanced by contrast limited adaptive histogram equalisation (CLAHE). Micro aneurysms are detected by extended minima method for candidate extraction. The statistical features are extracted by grey level coocurrence matrix (GLCM) and are given to the classifier to classify microaneurysms accurately. These detected MA are validated by comparing with expert ophthalmologists' hand-drawn ground-truth images. The simulation results show the performance of the proposed algorithm.\",\"PeriodicalId\":38797,\"journal\":{\"name\":\"International Journal of Advanced Intelligence Paradigms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Intelligence Paradigms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijaip.2019.10024482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Intelligence Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijaip.2019.10024482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

摘要

糖尿病视网膜病变是致盲的主要原因,包括微动脉瘤、出血和渗出物等病变。微血管瘤是糖尿病视网膜病变的第一个临床症状,它是视网膜病变眼底图像上的一个小红点。微动脉瘤的数量用来表示疾病的严重程度。该算法还对低分辨率糖尿病视网膜病变眼底图像中的微动脉瘤进行了检测和分类。最初,图像由中值滤波器处理,并通过对比度受限自适应直方图均衡(CLAHE)增强。微动脉瘤的检测采用扩展极小值法进行候选提取。利用灰度共生矩阵(GLCM)提取统计特征,并将其提供给分类器,以准确地对微动脉瘤进行分类。通过与眼科专家手绘的真实图像进行比较,验证了这些检测到的MA。仿真结果表明了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GLCM-based detection and classification of microaneurysm in diabetic retinopathy fundus images
Diabetic retinopathy is a major cause of blindness and it includes the lesions like microaneurysms, haemorrhages, and exudates. Microaneurysms are the first clinical sign of diabetic retinopathy and it is a small red dot on the retinopathy fundus images. The number of micro aneurysms is used to indicate the severity of the disease. The proposed algorithm detects and classifies the micro aneurysm from diabetic retinopathy fundus images in low resolution images also. Initially the image is processed by a median filter and enhanced by contrast limited adaptive histogram equalisation (CLAHE). Micro aneurysms are detected by extended minima method for candidate extraction. The statistical features are extracted by grey level coocurrence matrix (GLCM) and are given to the classifier to classify microaneurysms accurately. These detected MA are validated by comparing with expert ophthalmologists' hand-drawn ground-truth images. The simulation results show the performance of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信