广义Leonardo数恒等式的组合证明

IF 0.4 Q4 MATHEMATICS
M. Shattuck
{"title":"广义Leonardo数恒等式的组合证明","authors":"M. Shattuck","doi":"10.7546/nntdm.2022.28.4.778-790","DOIUrl":null,"url":null,"abstract":"In this paper, we provide combinatorial proofs of several prior identities satisfied by the recently introduced generalized Leonardo numbers, denoted by \\mathcal{L}_{k,n}, as well as derive some new formulas. To do so, we interpret \\mathcal{L}_{k,n} as the enumerator of two classes of linear colored tilings of length n. A comparable treatment is also given for the incomplete generalized Leonardo numbers. Finally, a (p,q)-generalization of \\mathcal{L}_{k,n} is obtained by considering the joint distribution of a pair of statistics on one of the aforementioned classes of colored tilings.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combinatorial proofs of identities for the generalized Leonardo numbers\",\"authors\":\"M. Shattuck\",\"doi\":\"10.7546/nntdm.2022.28.4.778-790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we provide combinatorial proofs of several prior identities satisfied by the recently introduced generalized Leonardo numbers, denoted by \\\\mathcal{L}_{k,n}, as well as derive some new formulas. To do so, we interpret \\\\mathcal{L}_{k,n} as the enumerator of two classes of linear colored tilings of length n. A comparable treatment is also given for the incomplete generalized Leonardo numbers. Finally, a (p,q)-generalization of \\\\mathcal{L}_{k,n} is obtained by considering the joint distribution of a pair of statistics on one of the aforementioned classes of colored tilings.\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2022.28.4.778-790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2022.28.4.778-790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文给出了最近引入的广义列奥纳多数(\mathcal{L}_{k,n})所满足的几个先验恒等式的组合证明,并导出了一些新的公式。为此,我们将\mathcal{L}_{k,n}解释为长度为n的两类线性彩色拼接的枚举数。对于不完全广义列奥纳多数也给出了类似的处理。最后,通过考虑上述一类彩色瓷砖上的一对统计量的联合分布,得到了\mathcal{L}_{k,n}的一个(p,q)概化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial proofs of identities for the generalized Leonardo numbers
In this paper, we provide combinatorial proofs of several prior identities satisfied by the recently introduced generalized Leonardo numbers, denoted by \mathcal{L}_{k,n}, as well as derive some new formulas. To do so, we interpret \mathcal{L}_{k,n} as the enumerator of two classes of linear colored tilings of length n. A comparable treatment is also given for the incomplete generalized Leonardo numbers. Finally, a (p,q)-generalization of \mathcal{L}_{k,n} is obtained by considering the joint distribution of a pair of statistics on one of the aforementioned classes of colored tilings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信