{"title":"基于非概率可靠性的应力约束多材料拓扑优化","authors":"Feiteng Cheng, Qinghai Zhao, Liang Zhang","doi":"10.1007/s10999-023-09669-2","DOIUrl":null,"url":null,"abstract":"<div><p>This article aims to develop a novel approach to non-probabilistic reliability-based multi-material topology optimization with stress constraints to address the optimization design problem considering external loading uncertainties. To be specific, the ordered solid isotropic material with penalization multi-material interpolation model is introduced into the non-probabilistic reliability-based topology optimization considering structural volume minimization under stress constraints, the multidimensional ellipsoidal model describes the non-probabilistic uncertainty. By utilizing the first-order reliability method, the failure probability can be estimated, and a non-probabilistic reliability index can be obtained. The global maximum stress is measured by adopting the normalized <i>p</i>-norm function method in combination with relaxation stress. The sensitivity analysis of the stress constraints is derived by the adjoint variable method, and the method of moving asymptote is employed to solve the design variables. Through several numerical examples, the effectiveness and feasibility of the presented method are verified to consider multi-material topology optimization with stress constraints in the absence of accurate probability distribution information of uncertain variables.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 1","pages":"171 - 193"},"PeriodicalIF":2.7000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-probabilistic reliability-based multi-material topology optimization with stress constraint\",\"authors\":\"Feiteng Cheng, Qinghai Zhao, Liang Zhang\",\"doi\":\"10.1007/s10999-023-09669-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article aims to develop a novel approach to non-probabilistic reliability-based multi-material topology optimization with stress constraints to address the optimization design problem considering external loading uncertainties. To be specific, the ordered solid isotropic material with penalization multi-material interpolation model is introduced into the non-probabilistic reliability-based topology optimization considering structural volume minimization under stress constraints, the multidimensional ellipsoidal model describes the non-probabilistic uncertainty. By utilizing the first-order reliability method, the failure probability can be estimated, and a non-probabilistic reliability index can be obtained. The global maximum stress is measured by adopting the normalized <i>p</i>-norm function method in combination with relaxation stress. The sensitivity analysis of the stress constraints is derived by the adjoint variable method, and the method of moving asymptote is employed to solve the design variables. Through several numerical examples, the effectiveness and feasibility of the presented method are verified to consider multi-material topology optimization with stress constraints in the absence of accurate probability distribution information of uncertain variables.</p></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"20 1\",\"pages\":\"171 - 193\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09669-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09669-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Non-probabilistic reliability-based multi-material topology optimization with stress constraint
This article aims to develop a novel approach to non-probabilistic reliability-based multi-material topology optimization with stress constraints to address the optimization design problem considering external loading uncertainties. To be specific, the ordered solid isotropic material with penalization multi-material interpolation model is introduced into the non-probabilistic reliability-based topology optimization considering structural volume minimization under stress constraints, the multidimensional ellipsoidal model describes the non-probabilistic uncertainty. By utilizing the first-order reliability method, the failure probability can be estimated, and a non-probabilistic reliability index can be obtained. The global maximum stress is measured by adopting the normalized p-norm function method in combination with relaxation stress. The sensitivity analysis of the stress constraints is derived by the adjoint variable method, and the method of moving asymptote is employed to solve the design variables. Through several numerical examples, the effectiveness and feasibility of the presented method are verified to consider multi-material topology optimization with stress constraints in the absence of accurate probability distribution information of uncertain variables.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.