存在移动障碍物的移动机器人最优路径规划

Q4 Engineering
A. Zambom
{"title":"存在移动障碍物的移动机器人最优路径规划","authors":"A. Zambom","doi":"10.1504/IJVAS.2018.10014255","DOIUrl":null,"url":null,"abstract":"This paper presents an optimisation method to search for the optimal trajectory of an unmanned mobile robot while avoiding stationary and moving obstacles that may be in collision route. In order to meet the kinematic restrictions of the vehicle, the path is estimated using a finite-dimensional approximating space generated by B-splines basis functions. A penalised continuous functional is used to convert the constrained minimisation problem into an unconstrained one. The optimisation is performed through a genetic algorithm that searches the finite-dimensional space of the B-splines coefficients which determine the trajectory to be travelled. Experimental results with linear and nonlinear moving obstacle fields illustrate the estimated optimal trajectories.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal mobile robot path planning in the presence of moving obstacles\",\"authors\":\"A. Zambom\",\"doi\":\"10.1504/IJVAS.2018.10014255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an optimisation method to search for the optimal trajectory of an unmanned mobile robot while avoiding stationary and moving obstacles that may be in collision route. In order to meet the kinematic restrictions of the vehicle, the path is estimated using a finite-dimensional approximating space generated by B-splines basis functions. A penalised continuous functional is used to convert the constrained minimisation problem into an unconstrained one. The optimisation is performed through a genetic algorithm that searches the finite-dimensional space of the B-splines coefficients which determine the trajectory to be travelled. Experimental results with linear and nonlinear moving obstacle fields illustrate the estimated optimal trajectories.\",\"PeriodicalId\":39322,\"journal\":{\"name\":\"International Journal of Vehicle Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVAS.2018.10014255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2018.10014255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种搜索无人移动机器人最优轨迹的优化方法,同时避开可能在碰撞路径上的静止和移动障碍物。为了满足车辆的运动限制,利用b样条基函数生成的有限维逼近空间估计路径。利用惩罚连续泛函将约束最小化问题转化为无约束最小化问题。优化是通过遗传算法执行的,该算法搜索确定要行进的轨迹的b样条系数的有限维空间。线性和非线性运动障碍场的实验结果验证了估计的最优轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal mobile robot path planning in the presence of moving obstacles
This paper presents an optimisation method to search for the optimal trajectory of an unmanned mobile robot while avoiding stationary and moving obstacles that may be in collision route. In order to meet the kinematic restrictions of the vehicle, the path is estimated using a finite-dimensional approximating space generated by B-splines basis functions. A penalised continuous functional is used to convert the constrained minimisation problem into an unconstrained one. The optimisation is performed through a genetic algorithm that searches the finite-dimensional space of the B-splines coefficients which determine the trajectory to be travelled. Experimental results with linear and nonlinear moving obstacle fields illustrate the estimated optimal trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Autonomous Systems
International Journal of Vehicle Autonomous Systems Engineering-Automotive Engineering
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: The IJVAS provides an international forum and refereed reference in the field of vehicle autonomous systems research and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信