{"title":"模块化MRI兼容移液管模拟器评估设计对拇指基底关节力学的影响","authors":"Nolan M. Norton, K. Fischer","doi":"10.1115/1.4054725","DOIUrl":null,"url":null,"abstract":"\n People who frequently use micropipettes experience hand and upper limb disorders. The basilar thumb joint, also known as the first carpometacarpal or trapeziometacarpal joint, is commonly affected by osteoarthritis (OA). Mechanical factors are associated with OA initiation and progression. We developed a MRI-compatible modular micropipette simulator to improve understanding of how micropipette design affects basilar thumb joint contact mechanics. The micropipette simulator also addresses limitations of current techniques for studying pipetting and basilar thumb joint mechanics. Its modularity will allow future studies to examine handle design parameters such as handle diameter, cross-sectional shape, and other features. A micropipette simulator with a cylindrical handle (length 127 mm, diameter 25 mm) was used with one subject to demonstrate the system's feasibility. Contact areas were within the range of prior data from basilar thumb joint models in power grasp and lateral pinch, and contact pressures were the same order of magnitude.","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Modular MRI-Compatible Pipette Simulator to Evaluate How Design Effects the Basilar Thumb Joint Mechanics\",\"authors\":\"Nolan M. Norton, K. Fischer\",\"doi\":\"10.1115/1.4054725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n People who frequently use micropipettes experience hand and upper limb disorders. The basilar thumb joint, also known as the first carpometacarpal or trapeziometacarpal joint, is commonly affected by osteoarthritis (OA). Mechanical factors are associated with OA initiation and progression. We developed a MRI-compatible modular micropipette simulator to improve understanding of how micropipette design affects basilar thumb joint contact mechanics. The micropipette simulator also addresses limitations of current techniques for studying pipetting and basilar thumb joint mechanics. Its modularity will allow future studies to examine handle design parameters such as handle diameter, cross-sectional shape, and other features. A micropipette simulator with a cylindrical handle (length 127 mm, diameter 25 mm) was used with one subject to demonstrate the system's feasibility. Contact areas were within the range of prior data from basilar thumb joint models in power grasp and lateral pinch, and contact pressures were the same order of magnitude.\",\"PeriodicalId\":49305,\"journal\":{\"name\":\"Journal of Medical Devices-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Devices-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4054725\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054725","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Modular MRI-Compatible Pipette Simulator to Evaluate How Design Effects the Basilar Thumb Joint Mechanics
People who frequently use micropipettes experience hand and upper limb disorders. The basilar thumb joint, also known as the first carpometacarpal or trapeziometacarpal joint, is commonly affected by osteoarthritis (OA). Mechanical factors are associated with OA initiation and progression. We developed a MRI-compatible modular micropipette simulator to improve understanding of how micropipette design affects basilar thumb joint contact mechanics. The micropipette simulator also addresses limitations of current techniques for studying pipetting and basilar thumb joint mechanics. Its modularity will allow future studies to examine handle design parameters such as handle diameter, cross-sectional shape, and other features. A micropipette simulator with a cylindrical handle (length 127 mm, diameter 25 mm) was used with one subject to demonstrate the system's feasibility. Contact areas were within the range of prior data from basilar thumb joint models in power grasp and lateral pinch, and contact pressures were the same order of magnitude.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.