一个直接证明环面秩$2$束在射影空间上是分裂的

Pub Date : 2020-09-03 DOI:10.7146/math.scand.a-121452
David Stapleton
{"title":"一个直接证明环面秩$2$束在射影空间上是分裂的","authors":"David Stapleton","doi":"10.7146/math.scand.a-121452","DOIUrl":null,"url":null,"abstract":"The point of this paper is to give a short, direct proof that rank $2$ toric vector bundles on $n$-dimensional projective space split once $n$ is at least $3$. This result is originally due to Bertin and Elencwajg, and there is also related work by Kaneyama, Klyachko, and Ilten-Süss. The idea is that, after possibly twisting the vector bundle, there is a section which is a complete intersection.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A direct proof that toric rank $2$ bundles on projective space split\",\"authors\":\"David Stapleton\",\"doi\":\"10.7146/math.scand.a-121452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The point of this paper is to give a short, direct proof that rank $2$ toric vector bundles on $n$-dimensional projective space split once $n$ is at least $3$. This result is originally due to Bertin and Elencwajg, and there is also related work by Kaneyama, Klyachko, and Ilten-Süss. The idea is that, after possibly twisting the vector bundle, there is a section which is a complete intersection.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-121452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-121452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的重点是给出一个简短的,直接的证明,秩$2$环矢量束在$n$维射影空间上分裂,当$n$至少为$3$时。这个结果最初是由Bertin和Elencwajg完成的,Kaneyama、Klyachko和ilten - s也有相关的工作。这个想法是,在可能扭曲矢量束之后,有一个截面是一个完整的交叉点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A direct proof that toric rank $2$ bundles on projective space split
The point of this paper is to give a short, direct proof that rank $2$ toric vector bundles on $n$-dimensional projective space split once $n$ is at least $3$. This result is originally due to Bertin and Elencwajg, and there is also related work by Kaneyama, Klyachko, and Ilten-Süss. The idea is that, after possibly twisting the vector bundle, there is a section which is a complete intersection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信