{"title":"关于Kähler和Kähler四元数流形中耦合方法的第一特征值估计的注记","authors":"Fabrice Baudoin, Gunhee Cho, Guang Yang","doi":"10.1214/22-ecp452","DOIUrl":null,"url":null,"abstract":"In this short note, using the Kendall-Cranston coupling, we study on K\\\"ahler (resp. quaternion K\\\"ahler) manifolds first eigenvalue estimates in terms of dimension, diameter, and lower bounds on the holomorphic (resp. quaternionic) sectional curvature.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A note on first eigenvalue estimates by coupling methods in Kähler and quaternion Kähler manifolds\",\"authors\":\"Fabrice Baudoin, Gunhee Cho, Guang Yang\",\"doi\":\"10.1214/22-ecp452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this short note, using the Kendall-Cranston coupling, we study on K\\\\\\\"ahler (resp. quaternion K\\\\\\\"ahler) manifolds first eigenvalue estimates in terms of dimension, diameter, and lower bounds on the holomorphic (resp. quaternionic) sectional curvature.\",\"PeriodicalId\":50543,\"journal\":{\"name\":\"Electronic Communications in Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Communications in Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ecp452\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp452","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A note on first eigenvalue estimates by coupling methods in Kähler and quaternion Kähler manifolds
In this short note, using the Kendall-Cranston coupling, we study on K\"ahler (resp. quaternion K\"ahler) manifolds first eigenvalue estimates in terms of dimension, diameter, and lower bounds on the holomorphic (resp. quaternionic) sectional curvature.
期刊介绍:
The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.