水波在不对称矩形沟槽上的传播

IF 0.8
Ranita Roy;Rumpa Chakraborty;B. N. Mandal
{"title":"水波在不对称矩形沟槽上的传播","authors":"Ranita Roy;Rumpa Chakraborty;B. N. Mandal","doi":"10.1093/qjmam/hbw015","DOIUrl":null,"url":null,"abstract":"Assuming linear theory, the problem of water wave scattering by an asymmetric rectangular trench is investigated by employing Havelock’s expansion of water wave potential. A multi-term Galerkin approximation technique involving ultra-spherical Gegenbauer polynomials has been utilised for solving a first-kind vector integral equation, which is obtained in the analysis of the problem following Havelock’s inversion formulae. Numerical estimates for the reflection and transmission coefficients are depicted graphically for different configurations of the rectangular trench. Numerical results available in the literatures are recovered by using the present method and thereby confirming the correctness of the numerical results presented here.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"70 1","pages":"49-64"},"PeriodicalIF":0.8000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/qjmam/hbw015","citationCount":"17","resultStr":"{\"title\":\"Propagation of water waves over an asymmetrical rectangular trench\",\"authors\":\"Ranita Roy;Rumpa Chakraborty;B. N. Mandal\",\"doi\":\"10.1093/qjmam/hbw015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assuming linear theory, the problem of water wave scattering by an asymmetric rectangular trench is investigated by employing Havelock’s expansion of water wave potential. A multi-term Galerkin approximation technique involving ultra-spherical Gegenbauer polynomials has been utilised for solving a first-kind vector integral equation, which is obtained in the analysis of the problem following Havelock’s inversion formulae. Numerical estimates for the reflection and transmission coefficients are depicted graphically for different configurations of the rectangular trench. Numerical results available in the literatures are recovered by using the present method and thereby confirming the correctness of the numerical results presented here.\",\"PeriodicalId\":92460,\"journal\":{\"name\":\"The quarterly journal of mechanics and applied mathematics\",\"volume\":\"70 1\",\"pages\":\"49-64\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/qjmam/hbw015\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The quarterly journal of mechanics and applied mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8152995/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8152995/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在线性理论条件下,利用Havelock水波势展开法研究了水波在非对称矩形沟槽中的散射问题。利用一种涉及超球面Gegenbauer多项式的多项Galerkin逼近技术,求解了一类矢量积分方程,该方程是在分析Havelock反演公式后得到的。对于矩形沟槽的不同结构,给出了反射系数和透射系数的数值估计。用本方法对已有文献的数值结果进行了恢复,从而证实了本文数值结果的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propagation of water waves over an asymmetrical rectangular trench
Assuming linear theory, the problem of water wave scattering by an asymmetric rectangular trench is investigated by employing Havelock’s expansion of water wave potential. A multi-term Galerkin approximation technique involving ultra-spherical Gegenbauer polynomials has been utilised for solving a first-kind vector integral equation, which is obtained in the analysis of the problem following Havelock’s inversion formulae. Numerical estimates for the reflection and transmission coefficients are depicted graphically for different configurations of the rectangular trench. Numerical results available in the literatures are recovered by using the present method and thereby confirming the correctness of the numerical results presented here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信