Hezhi He, Weijie Li, Zong‐ji Huang, Guidong Tian, Z. Zhu
{"title":"单螺杆挤压中基于正弦曲线设计的新型土墩型拉伸混合单元的数值分析","authors":"Hezhi He, Weijie Li, Zong‐ji Huang, Guidong Tian, Z. Zhu","doi":"10.1515/ipp-2022-4319","DOIUrl":null,"url":null,"abstract":"Abstract The rapid development of polymer blends and nanocomposites has put forward new requirements for the mixing performance of extruders. In comparison with shear flow field, extensional flow field has been shown to have unique advantages in improving dispersive mixing performance and reducing energy consumption. However, building an extensional flow field in a conventional single-screw extruder remains challenging. In this work, a new mound-shaped extensional mixing element (M-EME) was designed based on the geometric characteristics of a sine curve. To investigate the effect of this M-EME on the mixing properties of a conventional single-screw extruder, a numerical simulation analysis of this M-EME was performed. The results showed that the proportion of the region with a mixing index greater than 0.55 in the M-EME was higher than 43 %, and that the highest mixing index of the M-EME reached around 0.9, confirming the dominance of the extensional flow field in the M-EME. Moreover, it was observed that the changes in amplitude and period of the sine function have no significant effect on the distribution of the mixing index. The findings from this work provide a viable way to generate extensional flow fields in conventional screw extruders.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of a new mound-shaped extensional mixing element designed based on a sine curve in single-screw extrusion\",\"authors\":\"Hezhi He, Weijie Li, Zong‐ji Huang, Guidong Tian, Z. Zhu\",\"doi\":\"10.1515/ipp-2022-4319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The rapid development of polymer blends and nanocomposites has put forward new requirements for the mixing performance of extruders. In comparison with shear flow field, extensional flow field has been shown to have unique advantages in improving dispersive mixing performance and reducing energy consumption. However, building an extensional flow field in a conventional single-screw extruder remains challenging. In this work, a new mound-shaped extensional mixing element (M-EME) was designed based on the geometric characteristics of a sine curve. To investigate the effect of this M-EME on the mixing properties of a conventional single-screw extruder, a numerical simulation analysis of this M-EME was performed. The results showed that the proportion of the region with a mixing index greater than 0.55 in the M-EME was higher than 43 %, and that the highest mixing index of the M-EME reached around 0.9, confirming the dominance of the extensional flow field in the M-EME. Moreover, it was observed that the changes in amplitude and period of the sine function have no significant effect on the distribution of the mixing index. The findings from this work provide a viable way to generate extensional flow fields in conventional screw extruders.\",\"PeriodicalId\":14410,\"journal\":{\"name\":\"International Polymer Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Polymer Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2022-4319\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2022-4319","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Numerical analysis of a new mound-shaped extensional mixing element designed based on a sine curve in single-screw extrusion
Abstract The rapid development of polymer blends and nanocomposites has put forward new requirements for the mixing performance of extruders. In comparison with shear flow field, extensional flow field has been shown to have unique advantages in improving dispersive mixing performance and reducing energy consumption. However, building an extensional flow field in a conventional single-screw extruder remains challenging. In this work, a new mound-shaped extensional mixing element (M-EME) was designed based on the geometric characteristics of a sine curve. To investigate the effect of this M-EME on the mixing properties of a conventional single-screw extruder, a numerical simulation analysis of this M-EME was performed. The results showed that the proportion of the region with a mixing index greater than 0.55 in the M-EME was higher than 43 %, and that the highest mixing index of the M-EME reached around 0.9, confirming the dominance of the extensional flow field in the M-EME. Moreover, it was observed that the changes in amplitude and period of the sine function have no significant effect on the distribution of the mixing index. The findings from this work provide a viable way to generate extensional flow fields in conventional screw extruders.
期刊介绍:
International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.